Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
Cornell University

Monday, May 5: arXiv will be READ ONLY at 9:00AM EST for approximately 30 minutes. We apologize for any inconvenience.

We gratefully acknowledge support from the Simons Foundation,member institutions, and all contributors.Donate
arxiv logo>cs> arXiv:2402.02327
arXiv logo
Cornell University Logo

Computer Science > Computer Vision and Pattern Recognition

arXiv:2402.02327 (cs)
[Submitted on 4 Feb 2024 (v1), last revised 6 Feb 2024 (this version, v2)]

Title:Bootstrapping Audio-Visual Segmentation by Strengthening Audio Cues

View PDFHTML (experimental)
Abstract:How to effectively interact audio with vision has garnered considerable interest within the multi-modality research field. Recently, a novel audio-visual segmentation (AVS) task has been proposed, aiming to segment the sounding objects in video frames under the guidance of audio cues. However, most existing AVS methods are hindered by a modality imbalance where the visual features tend to dominate those of the audio modality, due to a unidirectional and insufficient integration of audio cues. This imbalance skews the feature representation towards the visual aspect, impeding the learning of joint audio-visual representations and potentially causing segmentation inaccuracies. To address this issue, we propose AVSAC. Our approach features a Bidirectional Audio-Visual Decoder (BAVD) with integrated bidirectional bridges, enhancing audio cues and fostering continuous interplay between audio and visual modalities. This bidirectional interaction narrows the modality imbalance, facilitating more effective learning of integrated audio-visual representations. Additionally, we present a strategy for audio-visual frame-wise synchrony as fine-grained guidance of BAVD. This strategy enhances the share of auditory components in visual features, contributing to a more balanced audio-visual representation learning. Extensive experiments show that our method attains new benchmarks in AVS performance.
Subjects:Computer Vision and Pattern Recognition (cs.CV); Sound (cs.SD); Audio and Speech Processing (eess.AS)
Cite as:arXiv:2402.02327 [cs.CV]
 (orarXiv:2402.02327v2 [cs.CV] for this version)
 https://doi.org/10.48550/arXiv.2402.02327
arXiv-issued DOI via DataCite

Submission history

From: Tianxiang Chen [view email]
[v1] Sun, 4 Feb 2024 03:02:35 UTC (1,644 KB)
[v2] Tue, 6 Feb 2024 11:35:05 UTC (1,642 KB)
Full-text links:

Access Paper:

Current browse context:
cs.CV
Change to browse by:
export BibTeX citation

Bookmark

BibSonomy logoReddit logo

Bibliographic and Citation Tools

Bibliographic Explorer(What is the Explorer?)
Connected Papers(What is Connected Papers?)
scite Smart Citations(What are Smart Citations?)

Code, Data and Media Associated with this Article

CatalyzeX Code Finder for Papers(What is CatalyzeX?)
Hugging Face(What is Huggingface?)
Papers with Code(What is Papers with Code?)

Demos

Hugging Face Spaces(What is Spaces?)

Recommenders and Search Tools

Influence Flower(What are Influence Flowers?)
CORE Recommender(What is CORE?)

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community?Learn more about arXivLabs.

Which authors of this paper are endorsers? |Disable MathJax (What is MathJax?)

[8]ページ先頭

©2009-2025 Movatter.jp