Computer Science > Neural and Evolutionary Computing
arXiv:2401.07102 (cs)
[Submitted on 13 Jan 2024]
Title:Evolving Code with A Large Language Model
View a PDF of the paper titled Evolving Code with A Large Language Model, by Erik Hemberg and 2 other authors
View PDFHTML (experimental)Abstract:Algorithms that use Large Language Models (LLMs) to evolve code arrived on the Genetic Programming (GP) scene very recently. We present LLM GP, a formalized LLM-based evolutionary algorithm designed to evolve code. Like GP, it uses evolutionary operators, but its designs and implementations of those operators radically differ from GP's because they enlist an LLM, using prompting and the LLM's pre-trained pattern matching and sequence completion capability. We also present a demonstration-level variant of LLM GP and share its code. By addressing algorithms that range from the formal to hands-on, we cover design and LLM-usage considerations as well as the scientific challenges that arise when using an LLM for genetic programming.
Comments: | 34 pages, 9 figures, 6 Tables |
Subjects: | Neural and Evolutionary Computing (cs.NE); Artificial Intelligence (cs.AI) |
ACM classes: | I.2.8 |
Cite as: | arXiv:2401.07102 [cs.NE] |
(orarXiv:2401.07102v1 [cs.NE] for this version) | |
https://doi.org/10.48550/arXiv.2401.07102 arXiv-issued DOI via DataCite |
Full-text links:
Access Paper:
- View PDF
- HTML (experimental)
- TeX Source
- Other Formats
View a PDF of the paper titled Evolving Code with A Large Language Model, by Erik Hemberg and 2 other authors
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer(What is the Explorer?)
Connected Papers(What is Connected Papers?)
Litmaps(What is Litmaps?)
scite Smart Citations(What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv(What is alphaXiv?)
CatalyzeX Code Finder for Papers(What is CatalyzeX?)
DagsHub(What is DagsHub?)
Gotit.pub(What is GotitPub?)
Hugging Face(What is Huggingface?)
Papers with Code(What is Papers with Code?)
ScienceCast(What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower(What are Influence Flowers?)
CORE Recommender(What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community?Learn more about arXivLabs.