Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
Cornell University
We gratefully acknowledge support from the Simons Foundation,member institutions, and all contributors.Donate
arxiv logo>cs> arXiv:2401.02610
arXiv logo
Cornell University Logo

Computer Science > Computer Vision and Pattern Recognition

arXiv:2401.02610 (cs)
[Submitted on 5 Jan 2024 (v1), last revised 20 Jan 2024 (this version, v2)]

Title:DHGCN: Dynamic Hop Graph Convolution Network for Self-Supervised Point Cloud Learning

View PDFHTML (experimental)
Abstract:Recent works attempt to extend Graph Convolution Networks (GCNs) to point clouds for classification and segmentation tasks. These works tend to sample and group points to create smaller point sets locally and mainly focus on extracting local features through GCNs, while ignoring the relationship between point sets. In this paper, we propose the Dynamic Hop Graph Convolution Network (DHGCN) for explicitly learning the contextual relationships between the voxelized point parts, which are treated as graph nodes. Motivated by the intuition that the contextual information between point parts lies in the pairwise adjacent relationship, which can be depicted by the hop distance of the graph quantitatively, we devise a novel self-supervised part-level hop distance reconstruction task and design a novel loss function accordingly to facilitate training. In addition, we propose the Hop Graph Attention (HGA), which takes the learned hop distance as input for producing attention weights to allow edge features to contribute distinctively in aggregation. Eventually, the proposed DHGCN is a plug-and-play module that is compatible with point-based backbone networks. Comprehensive experiments on different backbones and tasks demonstrate that our self-supervised method achieves state-of-the-art performance. Our source code is available at:this https URL.
Comments:Accepted to AAAI 2024
Subjects:Computer Vision and Pattern Recognition (cs.CV)
Cite as:arXiv:2401.02610 [cs.CV]
 (orarXiv:2401.02610v2 [cs.CV] for this version)
 https://doi.org/10.48550/arXiv.2401.02610
arXiv-issued DOI via DataCite

Submission history

From: Jincen Jiang [view email]
[v1] Fri, 5 Jan 2024 02:54:23 UTC (11,852 KB)
[v2] Sat, 20 Jan 2024 22:05:39 UTC (11,920 KB)
Full-text links:

Access Paper:

Current browse context:
cs.CV
Change to browse by:
export BibTeX citation

Bookmark

BibSonomy logoReddit logo

Bibliographic and Citation Tools

Bibliographic Explorer(What is the Explorer?)
Connected Papers(What is Connected Papers?)
scite Smart Citations(What are Smart Citations?)

Code, Data and Media Associated with this Article

CatalyzeX Code Finder for Papers(What is CatalyzeX?)
Hugging Face(What is Huggingface?)
Papers with Code(What is Papers with Code?)

Demos

Hugging Face Spaces(What is Spaces?)

Recommenders and Search Tools

Influence Flower(What are Influence Flowers?)
CORE Recommender(What is CORE?)

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community?Learn more about arXivLabs.

Which authors of this paper are endorsers? |Disable MathJax (What is MathJax?)

[8]ページ先頭

©2009-2025 Movatter.jp