Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
Cornell University
We gratefully acknowledge support from the Simons Foundation,member institutions, and all contributors.Donate
arxiv logo>cs> arXiv:2312.13630
arXiv logo
Cornell University Logo

Computer Science > Computer Vision and Pattern Recognition

arXiv:2312.13630 (cs)
[Submitted on 21 Dec 2023]

Title:MFABA: A More Faithful and Accelerated Boundary-based Attribution Method for Deep Neural Networks

View PDFHTML (experimental)
Abstract:To better understand the output of deep neural networks (DNN), attribution based methods have been an important approach for model interpretability, which assign a score for each input dimension to indicate its importance towards the model outcome. Notably, the attribution methods use the axioms of sensitivity and implementation invariance to ensure the validity and reliability of attribution results. Yet, the existing attribution methods present challenges for effective interpretation and efficient computation. In this work, we introduce MFABA, an attribution algorithm that adheres to axioms, as a novel method for interpreting DNN. Additionally, we provide the theoretical proof and in-depth analysis for MFABA algorithm, and conduct a large scale experiment. The results demonstrate its superiority by achieving over 101.5142 times faster speed than the state-of-the-art attribution algorithms. The effectiveness of MFABA is thoroughly evaluated through the statistical analysis in comparison to other methods, and the full implementation package is open-source at:this https URL
Comments:Accepted by The 38th Annual AAAI Conference on Artificial Intelligence (AAAI-24)
Subjects:Computer Vision and Pattern Recognition (cs.CV); Machine Learning (cs.LG)
Cite as:arXiv:2312.13630 [cs.CV]
 (orarXiv:2312.13630v1 [cs.CV] for this version)
 https://doi.org/10.48550/arXiv.2312.13630
arXiv-issued DOI via DataCite

Submission history

From: Zhibo Jin [view email]
[v1] Thu, 21 Dec 2023 07:48:15 UTC (35,615 KB)
Full-text links:

Access Paper:

Current browse context:
cs.CV
Change to browse by:
export BibTeX citation

Bookmark

BibSonomy logoReddit logo

Bibliographic and Citation Tools

Bibliographic Explorer(What is the Explorer?)
Connected Papers(What is Connected Papers?)
scite Smart Citations(What are Smart Citations?)

Code, Data and Media Associated with this Article

CatalyzeX Code Finder for Papers(What is CatalyzeX?)
Hugging Face(What is Huggingface?)
Papers with Code(What is Papers with Code?)

Demos

Hugging Face Spaces(What is Spaces?)

Recommenders and Search Tools

Influence Flower(What are Influence Flowers?)
CORE Recommender(What is CORE?)

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community?Learn more about arXivLabs.

Which authors of this paper are endorsers? |Disable MathJax (What is MathJax?)

[8]ページ先頭

©2009-2025 Movatter.jp