Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
Cornell University

Monday, May 5: arXiv will be READ ONLY at 9:00AM EST for approximately 30 minutes. We apologize for any inconvenience.

We gratefully acknowledge support from the Simons Foundation,member institutions, and all contributors.Donate
arxiv logo>cs> arXiv:2312.06475
arXiv logo
Cornell University Logo

Computer Science > Robotics

arXiv:2312.06475 (cs)
[Submitted on 11 Dec 2023]

Title:NetROS-5G: Enhancing Personalization through 5G Network Slicing and Edge Computing in Human-Robot Interactions

View PDFHTML (experimental)
Abstract:Robots are increasingly being used in a variety of applications, from manufacturing and healthcare to education and customer service. However, the mobility, power, and price points of these robots often dictate that they do not have sufficient computing power on board to run modern algorithms for personalization in human-robot interaction at desired rates. This can limit the effectiveness of the interaction and limit the potential applications for these robots. 5G connectivity provides a solution to this problem by offering high data rates, bandwidth, and low latency that can facilitate robotics services. Additionally, the widespread availability of cloud computing has made it easy to access almost unlimited computing power at a low cost. Edge computing, which involves placing compute resources closer to the action, can offer even lower latency than cloud computing. In this paper, we explore the potential of combining 5G, edge, and cloud computing to provide improved personalization in human-robot interaction. We design, develop, and demonstrate a new framework, entitled NetROS-5G, to show how the performance gained by utilizing these technologies can overcome network latency and significantly enhance personalization in robotics. Our results show that the integration of 5G network slicing, edge computing, and cloud computing can collectively offer a cost-efficient and superior level of personalization in a modern human-robot interaction scenario.
Subjects:Robotics (cs.RO)
Report number:CONCATENATE/2023/09
Cite as:arXiv:2312.06475 [cs.RO]
 (orarXiv:2312.06475v1 [cs.RO] for this version)
 https://doi.org/10.48550/arXiv.2312.06475
arXiv-issued DOI via DataCite

Submission history

From: Anestis Dalgkitsis Dr. [view email]
[v1] Mon, 11 Dec 2023 16:03:31 UTC (1,906 KB)
Full-text links:

Access Paper:

Current browse context:
cs.RO
Change to browse by:
export BibTeX citation

Bookmark

BibSonomy logoReddit logo

Bibliographic and Citation Tools

Bibliographic Explorer(What is the Explorer?)
Connected Papers(What is Connected Papers?)
scite Smart Citations(What are Smart Citations?)

Code, Data and Media Associated with this Article

CatalyzeX Code Finder for Papers(What is CatalyzeX?)
Hugging Face(What is Huggingface?)
Papers with Code(What is Papers with Code?)

Demos

Hugging Face Spaces(What is Spaces?)

Recommenders and Search Tools

Influence Flower(What are Influence Flowers?)
CORE Recommender(What is CORE?)

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community?Learn more about arXivLabs.

Which authors of this paper are endorsers? |Disable MathJax (What is MathJax?)

[8]ページ先頭

©2009-2025 Movatter.jp