Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
Cornell University
We gratefully acknowledge support from the Simons Foundation,member institutions, and all contributors.Donate
arxiv logo>eess> arXiv:2311.02003
arXiv logo
Cornell University Logo

Electrical Engineering and Systems Science > Image and Video Processing

arXiv:2311.02003 (eess)
[Submitted on 3 Nov 2023 (v1), last revised 2 Apr 2025 (this version, v2)]

Title:Efficient Model-Based Deep Learning via Network Pruning and Fine-Tuning

View PDFHTML (experimental)
Abstract:Model-based deep learning (MBDL) is a powerful methodology for designing deep models to solve imaging inverse problems. MBDL networks can be seen as iterative algorithms that estimate the desired image using a physical measurement model and a learned image prior specified using a convolutional neural net (CNNs). The iterative nature of MBDL networks increases the test-time computational complexity, which limits their applicability in certain large-scale applications. Here we make two contributions to address this issue: First, we show how structured pruning can be adopted to reduce the number of parameters in MBDL networks. Second, we present three methods to fine-tune the pruned MBDL networks to mitigate potential performance loss. Each fine-tuning strategy has a unique benefit that depends on the presence of a pre-trained model and a high-quality ground truth. We show that our pruning and fine-tuning approach can accelerate image reconstruction using popular deep equilibrium learning (DEQ) and deep unfolding (DU) methods by 50% and 32%, respectively, with nearly no performance loss. This work thus offers a step forward for solving inverse problems by showing the potential of pruning to improve the scalability of MBDL. Code is available atthis https URL .
Subjects:Image and Video Processing (eess.IV); Computer Vision and Pattern Recognition (cs.CV)
Cite as:arXiv:2311.02003 [eess.IV]
 (orarXiv:2311.02003v2 [eess.IV] for this version)
 https://doi.org/10.48550/arXiv.2311.02003
arXiv-issued DOI via DataCite

Submission history

From: Weijie Gan [view email]
[v1] Fri, 3 Nov 2023 16:05:51 UTC (7,640 KB)
[v2] Wed, 2 Apr 2025 21:03:41 UTC (3,404 KB)
Full-text links:

Access Paper:

Current browse context:
eess.IV
Change to browse by:
export BibTeX citation

Bookmark

BibSonomy logoReddit logo

Bibliographic and Citation Tools

Bibliographic Explorer(What is the Explorer?)
Connected Papers(What is Connected Papers?)
scite Smart Citations(What are Smart Citations?)

Code, Data and Media Associated with this Article

CatalyzeX Code Finder for Papers(What is CatalyzeX?)
Hugging Face(What is Huggingface?)
Papers with Code(What is Papers with Code?)

Demos

Hugging Face Spaces(What is Spaces?)

Recommenders and Search Tools

Influence Flower(What are Influence Flowers?)
CORE Recommender(What is CORE?)

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community?Learn more about arXivLabs.

Which authors of this paper are endorsers? |Disable MathJax (What is MathJax?)

[8]ページ先頭

©2009-2025 Movatter.jp