Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
Cornell University
We gratefully acknowledge support from the Simons Foundation,member institutions, and all contributors.Donate
arxiv logo>cs> arXiv:2311.01276
arXiv logo
Cornell University Logo

Computer Science > Machine Learning

arXiv:2311.01276 (cs)
[Submitted on 2 Nov 2023 (v1), last revised 31 Mar 2024 (this version, v3)]

Title:Neural Atoms: Propagating Long-range Interaction in Molecular Graphs through Efficient Communication Channel

View PDFHTML (experimental)
Abstract:Graph Neural Networks (GNNs) have been widely adopted for drug discovery with molecular graphs. Nevertheless, current GNNs mainly excel in leveraging short-range interactions (SRI) but struggle to capture long-range interactions (LRI), both of which are crucial for determining molecular properties. To tackle this issue, we propose a method to abstract the collective information of atomic groups into a few $\textit{Neural Atoms}$ by implicitly projecting the atoms of a molecular. Specifically, we explicitly exchange the information among neural atoms and project them back to the atoms' representations as an enhancement. With this mechanism, neural atoms establish the communication channels among distant nodes, effectively reducing the interaction scope of arbitrary node pairs into a single hop. To provide an inspection of our method from a physical perspective, we reveal its connection to the traditional LRI calculation method, Ewald Summation. The Neural Atom can enhance GNNs to capture LRI by approximating the potential LRI of the molecular. We conduct extensive experiments on four long-range graph benchmarks, covering graph-level and link-level tasks on molecular graphs. We achieve up to a 27.32% and 38.27% improvement in the 2D and 3D scenarios, respectively. Empirically, our method can be equipped with an arbitrary GNN to help capture LRI. Code and datasets are publicly available inthis https URL.
Subjects:Machine Learning (cs.LG); Quantitative Methods (q-bio.QM)
Cite as:arXiv:2311.01276 [cs.LG]
 (orarXiv:2311.01276v3 [cs.LG] for this version)
 https://doi.org/10.48550/arXiv.2311.01276
arXiv-issued DOI via DataCite

Submission history

From: Xuan Li [view email]
[v1] Thu, 2 Nov 2023 14:44:50 UTC (7,092 KB)
[v2] Mon, 27 Nov 2023 13:02:50 UTC (8,705 KB)
[v3] Sun, 31 Mar 2024 14:28:51 UTC (15,365 KB)
Full-text links:

Access Paper:

Current browse context:
cs.LG
Change to browse by:
export BibTeX citation

Bookmark

BibSonomy logoReddit logo

Bibliographic and Citation Tools

Bibliographic Explorer(What is the Explorer?)
Connected Papers(What is Connected Papers?)
scite Smart Citations(What are Smart Citations?)

Code, Data and Media Associated with this Article

CatalyzeX Code Finder for Papers(What is CatalyzeX?)
Hugging Face(What is Huggingface?)
Papers with Code(What is Papers with Code?)

Demos

Hugging Face Spaces(What is Spaces?)

Recommenders and Search Tools

Influence Flower(What are Influence Flowers?)
CORE Recommender(What is CORE?)
IArxiv Recommender(What is IArxiv?)

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community?Learn more about arXivLabs.

Which authors of this paper are endorsers? |Disable MathJax (What is MathJax?)

[8]ページ先頭

©2009-2025 Movatter.jp