Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
Cornell University
We gratefully acknowledge support from the Simons Foundation,member institutions, and all contributors.Donate
arxiv logo>cs> arXiv:2310.15742
arXiv logo
Cornell University Logo

Computer Science > Machine Learning

arXiv:2310.15742 (cs)
[Submitted on 24 Oct 2023 (v1), last revised 14 Nov 2023 (this version, v2)]

Title:Improving Diffusion Models for ECG Imputation with an Augmented Template Prior

View PDF
Abstract:Pulsative signals such as the electrocardiogram (ECG) are extensively collected as part of routine clinical care. However, noisy and poor-quality recordings are a major issue for signals collected using mobile health systems, decreasing the signal quality, leading to missing values, and affecting automated downstream tasks. Recent studies have explored the imputation of missing values in ECG with probabilistic time-series models. Nevertheless, in comparison with the deterministic models, their performance is still limited, as the variations across subjects and heart-beat relationships are not explicitly considered in the training objective. In this work, to improve the imputation and forecasting accuracy for ECG with probabilistic models, we present a template-guided denoising diffusion probabilistic model (DDPM), PulseDiff, which is conditioned on an informative prior for a range of health conditions. Specifically, 1) we first extract a subject-level pulsative template from the observed values to use as an informative prior of the missing values, which personalises the prior; 2) we then add beat-level stochastic shift terms to augment the prior, which considers variations in the position and amplitude of the prior at each beat; 3) we finally design a confidence score to consider the health condition of the subject, which ensures our prior is provided safely. Experiments with the PTBXL dataset reveal that PulseDiff improves the performance of two strong DDPM baseline models, CSDI and SSSD$^{S4}$, verifying that our method guides the generation of DDPMs while managing the uncertainty. When combined with SSSD$^{S4}$, PulseDiff outperforms the leading deterministic model for short-interval missing data and is comparable for long-interval data loss.
Subjects:Machine Learning (cs.LG)
Cite as:arXiv:2310.15742 [cs.LG]
 (orarXiv:2310.15742v2 [cs.LG] for this version)
 https://doi.org/10.48550/arXiv.2310.15742
arXiv-issued DOI via DataCite

Submission history

From: Alexander Jenkins [view email]
[v1] Tue, 24 Oct 2023 11:34:15 UTC (920 KB)
[v2] Tue, 14 Nov 2023 12:02:43 UTC (920 KB)
Full-text links:

Access Paper:

  • View PDF
  • TeX Source
  • Other Formats
Current browse context:
cs.LG
Change to browse by:
export BibTeX citation

Bookmark

BibSonomy logoReddit logo

Bibliographic and Citation Tools

Bibliographic Explorer(What is the Explorer?)
Connected Papers(What is Connected Papers?)
scite Smart Citations(What are Smart Citations?)

Code, Data and Media Associated with this Article

CatalyzeX Code Finder for Papers(What is CatalyzeX?)
Hugging Face(What is Huggingface?)
Papers with Code(What is Papers with Code?)

Demos

Hugging Face Spaces(What is Spaces?)

Recommenders and Search Tools

Influence Flower(What are Influence Flowers?)
CORE Recommender(What is CORE?)
IArxiv Recommender(What is IArxiv?)

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community?Learn more about arXivLabs.

Which authors of this paper are endorsers? |Disable MathJax (What is MathJax?)

[8]ページ先頭

©2009-2025 Movatter.jp