Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
Cornell University
We gratefully acknowledge support from the Simons Foundation,member institutions, and all contributors.Donate
arxiv logo>cs> arXiv:2310.07121
arXiv logo
Cornell University Logo

Computer Science > Multimedia

arXiv:2310.07121 (cs)
[Submitted on 11 Oct 2023]

Title:Motion Vector-Domain Video Steganalysis Exploiting Skipped Macroblocks

View PDF
Abstract:Video steganography has the potential to be used to convey illegal information, and video steganalysis is a vital tool to detect the presence of this illicit act. Currently, all the motion vector (MV)-based video steganalysis algorithms extract feature sets directly on the MVs, but ignoring the steganograhic operation may perturb the statistics distribution of other video encoding elements, such as the skipped macroblocks (no direct MVs). This paper proposes a novel 11-dimensional feature set to detect MV-based video steganography based on the above observation. The proposed feature is extracted based on the skipped macroblocks by recompression calibration. Specifically, the feature consists of two components. The first is the probability distribution of motion vector prediction (MVP) difference, and the second is the probability distribution of partition state transfer. Extensive experiments on different conditions demonstrate that the proposed feature set achieves good detection accuracy, especially in lower embedding capacity. In addition, the loss of detection performance caused by recompression calibration using mismatched quantization parameters (QP) is within the acceptable range, so the proposed method can be used in practical scenarios.
Subjects:Multimedia (cs.MM); Cryptography and Security (cs.CR)
Cite as:arXiv:2310.07121 [cs.MM]
 (orarXiv:2310.07121v1 [cs.MM] for this version)
 https://doi.org/10.48550/arXiv.2310.07121
arXiv-issued DOI via DataCite

Submission history

From: Jun Li [view email]
[v1] Wed, 11 Oct 2023 01:51:19 UTC (1,404 KB)
Full-text links:

Access Paper:

  • View PDF
  • TeX Source
  • Other Formats
Current browse context:
cs.MM
Change to browse by:
export BibTeX citation

Bookmark

BibSonomy logoReddit logo

Bibliographic and Citation Tools

Bibliographic Explorer(What is the Explorer?)
Connected Papers(What is Connected Papers?)
scite Smart Citations(What are Smart Citations?)

Code, Data and Media Associated with this Article

CatalyzeX Code Finder for Papers(What is CatalyzeX?)
Hugging Face(What is Huggingface?)
Papers with Code(What is Papers with Code?)

Demos

Hugging Face Spaces(What is Spaces?)

Recommenders and Search Tools

Influence Flower(What are Influence Flowers?)
CORE Recommender(What is CORE?)

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community?Learn more about arXivLabs.

Which authors of this paper are endorsers? |Disable MathJax (What is MathJax?)

[8]ページ先頭

©2009-2025 Movatter.jp