Movatterモバイル変換


[0]ホーム

URL:


close this message
arXiv smileybones

arXiv Is Hiring Software Developers

Work on one of the world's most important websites and make an impact on open science.

View Jobs
Skip to main content
Cornell University

arXiv Is Hiring Software Devs

View Jobs
We gratefully acknowledge support from the Simons Foundation,member institutions, and all contributors.Donate
arxiv logo>cs> arXiv:2310.06165
arXiv logo
Cornell University Logo

Computer Science > Computation and Language

arXiv:2310.06165 (cs)
[Submitted on 9 Oct 2023 (v1), last revised 19 Oct 2023 (this version, v2)]

Title:CAW-coref: Conjunction-Aware Word-level Coreference Resolution

View PDF
Abstract:State-of-the-art coreference resolutions systems depend on multiple LLM calls per document and are thus prohibitively expensive for many use cases (e.g., information extraction with large corpora). The leading word-level coreference system (WL-coref) attains 96.6% of these SOTA systems' performance while being much more efficient. In this work, we identify a routine yet important failure case of WL-coref: dealing with conjoined mentions such as 'Tom and Mary'. We offer a simple yet effective solution that improves the performance on the OntoNotes test set by 0.9% F1, shrinking the gap between efficient word-level coreference resolution and expensive SOTA approaches by 34.6%. Our Conjunction-Aware Word-level coreference model (CAW-coref) and code is available atthis https URL.
Comments:Accepted at CRAC 2023
Subjects:Computation and Language (cs.CL); Artificial Intelligence (cs.AI)
Cite as:arXiv:2310.06165 [cs.CL]
 (orarXiv:2310.06165v2 [cs.CL] for this version)
 https://doi.org/10.48550/arXiv.2310.06165
arXiv-issued DOI via DataCite

Submission history

From: Karel D'Oosterlinck [view email]
[v1] Mon, 9 Oct 2023 21:32:49 UTC (82 KB)
[v2] Thu, 19 Oct 2023 17:31:14 UTC (82 KB)
Full-text links:

Access Paper:

  • View PDF
  • TeX Source
  • Other Formats
Current browse context:
cs.CL
Change to browse by:
export BibTeX citation

Bookmark

BibSonomy logoReddit logo

Bibliographic and Citation Tools

Bibliographic Explorer(What is the Explorer?)
Connected Papers(What is Connected Papers?)
scite Smart Citations(What are Smart Citations?)

Code, Data and Media Associated with this Article

CatalyzeX Code Finder for Papers(What is CatalyzeX?)
Hugging Face(What is Huggingface?)
Papers with Code(What is Papers with Code?)

Demos

Hugging Face Spaces(What is Spaces?)

Recommenders and Search Tools

Influence Flower(What are Influence Flowers?)
CORE Recommender(What is CORE?)

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community?Learn more about arXivLabs.

Which authors of this paper are endorsers? |Disable MathJax (What is MathJax?)

[8]ページ先頭

©2009-2025 Movatter.jp