Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
Cornell University

Monday, May 5: arXiv will be READ ONLY at 9:00AM EST for approximately 30 minutes. We apologize for any inconvenience.

We gratefully acknowledge support from the Simons Foundation,member institutions, and all contributors.Donate
arxiv logo>cs> arXiv:2310.01612
arXiv logo
Cornell University Logo

Computer Science > Information Retrieval

arXiv:2310.01612 (cs)
[Submitted on 2 Oct 2023]

Title:Towards Efficient and Effective Adaptation of Large Language Models for Sequential Recommendation

View PDF
Abstract:In recent years, with large language models (LLMs) achieving state-of-the-art performance in context understanding, increasing efforts have been dedicated to developing LLM-enhanced sequential recommendation (SR) methods. Considering that most existing LLMs are not specifically optimized for recommendation tasks, adapting them for SR becomes a critical step in LLM-enhanced SR methods. Though numerous adaptation methods have been developed, it still remains a significant challenge to adapt LLMs for SR both efficiently and effectively. To address this challenge, in this paper, we introduce a novel side sequential network adaptation method, denoted as SSNA, for LLM enhanced SR. SSNA features three key designs to allow both efficient and effective LLM adaptation. First, SSNA learns adapters separate from LLMs, while fixing all the pre-trained parameters within LLMs to allow efficient adaptation. In addition, SSNA adapts the top-a layers of LLMs jointly, and integrates adapters sequentially for enhanced effectiveness (i.e., recommendation performance). We compare SSNA against five state-of-the-art baseline methods on five benchmark datasets using three LLMs. The experimental results demonstrate that SSNA significantly outperforms all the baseline methods in terms of recommendation performance, and achieves substantial improvement over the best-performing baseline methods at both run-time and memory efficiency during training. Our analysis shows the effectiveness of integrating adapters in a sequential manner. Our parameter study demonstrates the effectiveness of jointly adapting the top-a layers of LLMs.
Subjects:Information Retrieval (cs.IR)
Cite as:arXiv:2310.01612 [cs.IR]
 (orarXiv:2310.01612v1 [cs.IR] for this version)
 https://doi.org/10.48550/arXiv.2310.01612
arXiv-issued DOI via DataCite

Submission history

From: Bo Peng [view email]
[v1] Mon, 2 Oct 2023 20:03:42 UTC (1,510 KB)
Full-text links:

Access Paper:

  • View PDF
  • TeX Source
  • Other Formats
Current browse context:
cs.IR
Change to browse by:
export BibTeX citation

Bookmark

BibSonomy logoReddit logo

Bibliographic and Citation Tools

Bibliographic Explorer(What is the Explorer?)
Connected Papers(What is Connected Papers?)
scite Smart Citations(What are Smart Citations?)

Code, Data and Media Associated with this Article

CatalyzeX Code Finder for Papers(What is CatalyzeX?)
Hugging Face(What is Huggingface?)
Papers with Code(What is Papers with Code?)

Demos

Hugging Face Spaces(What is Spaces?)

Recommenders and Search Tools

Influence Flower(What are Influence Flowers?)
CORE Recommender(What is CORE?)

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community?Learn more about arXivLabs.

Which authors of this paper are endorsers? |Disable MathJax (What is MathJax?)

[8]ページ先頭

©2009-2025 Movatter.jp