Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
Cornell University
We gratefully acknowledge support from the Simons Foundation,member institutions, and all contributors.Donate
arxiv logo>cs> arXiv:2309.10522
arXiv logo
Cornell University Logo

Computer Science > Computer Vision and Pattern Recognition

arXiv:2309.10522 (cs)
[Submitted on 19 Sep 2023]

Title:Visible and NIR Image Fusion Algorithm Based on Information Complementarity

Authors:Zhuo Li,Bo Li
View PDF
Abstract:Visible and near-infrared(NIR) band sensors provide images that capture complementary spectral radiations from a scene. And the fusion of the visible and NIR image aims at utilizing their spectrum properties to enhance image quality. However, currently visible and NIR fusion algorithms cannot well take advantage of spectrum properties, as well as lack information complementarity, which results in color distortion and artifacts. Therefore, this paper designs a complementary fusion model from the level of physical signals. First, in order to distinguish between noise and useful information, we use two layers of the weight-guided filter and guided filter to obtain texture and edge layers, respectively. Second, to generate the initial visible-NIR complementarity weight map, the difference maps of visible and NIR are filtered by the extend-DoG filter. After that, the significant region of NIR night-time compensation guides the initial complementarity weight map by the arctanI function. Finally, the fusion images can be generated by the complementarity weight maps of visible and NIR images, respectively. The experimental results demonstrate that the proposed algorithm can not only well take advantage of the spectrum properties and the information complementarity, but also avoid color unnatural while maintaining naturalness, which outperforms the state-of-the-art.
Subjects:Computer Vision and Pattern Recognition (cs.CV); Artificial Intelligence (cs.AI)
Cite as:arXiv:2309.10522 [cs.CV]
 (orarXiv:2309.10522v1 [cs.CV] for this version)
 https://doi.org/10.48550/arXiv.2309.10522
arXiv-issued DOI via DataCite

Submission history

From: Zhuo Li [view email]
[v1] Tue, 19 Sep 2023 11:07:24 UTC (3,889 KB)
Full-text links:

Access Paper:

  • View PDF
  • TeX Source
  • Other Formats
Current browse context:
cs.CV
Change to browse by:
export BibTeX citation

Bookmark

BibSonomy logoReddit logo

Bibliographic and Citation Tools

Bibliographic Explorer(What is the Explorer?)
Connected Papers(What is Connected Papers?)
scite Smart Citations(What are Smart Citations?)

Code, Data and Media Associated with this Article

CatalyzeX Code Finder for Papers(What is CatalyzeX?)
Hugging Face(What is Huggingface?)
Papers with Code(What is Papers with Code?)

Demos

Hugging Face Spaces(What is Spaces?)

Recommenders and Search Tools

Influence Flower(What are Influence Flowers?)
CORE Recommender(What is CORE?)

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community?Learn more about arXivLabs.

Which authors of this paper are endorsers? |Disable MathJax (What is MathJax?)

[8]ページ先頭

©2009-2025 Movatter.jp