Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
Cornell University

Monday, May 5: arXiv will be READ ONLY at 9:00AM EST for approximately 30 minutes. We apologize for any inconvenience.

We gratefully acknowledge support from the Simons Foundation,member institutions, and all contributors.Donate
arxiv logo>physics> arXiv:2309.05361
arXiv logo
Cornell University Logo

Physics > Plasma Physics

arXiv:2309.05361 (physics)
[Submitted on 11 Sep 2023 (v1), last revised 1 Nov 2023 (this version, v2)]

Title:Cross-tokamak Disruption Prediction based on Physics-Guided Feature Extraction and domain adaptation

View PDF
Abstract:The high acquisition cost and the significant demand for disruptive discharges for data-driven disruption prediction models in future tokamaks pose an inherent contradiction in disruption prediction research. In this paper, we demonstrated a novel approach to predict disruption in a future tokamak using only a few discharges. The first step is to use the existing understanding of physics to extract physics-guided features from the diagnostic signals of each tokamak, called physics-guided feature extraction (PGFE). The second step is to align a few data from the future tokamak (target domain) and a large amount of data from existing tokamak (source domain) based on a domain adaptation algorithm called CORrelation ALignment (CORAL). It is the first attempt at applying domain adaptation in the task of disruption prediction. PGFE has been successfully applied in J-TEXT to predict disruption with excellent performance. PGFE can also reduce the data volume requirements due to extracting the less device-specific features, thereby establishing a solid foundation for cross-tokamak disruption prediction. We have further improved CORAL (supervised CORAL, S-CORAL) to enhance its appropriateness in feature alignment for the disruption prediction task. To simulate the existing and future tokamak case, we selected J-TEXT as the existing tokamak and EAST as the future tokamak, which has a large gap in the ranges of plasma parameters. The utilization of the S-CORAL improves the disruption prediction performance on future tokamak. Through interpretable analysis, we discovered that the learned knowledge of the disruption prediction model through this approach exhibits more similarities to the model trained on large data volumes of future tokamak.
Comments:17 pages, 9 figures
Subjects:Plasma Physics (physics.plasm-ph); Artificial Intelligence (cs.AI); Machine Learning (cs.LG)
Cite as:arXiv:2309.05361 [physics.plasm-ph]
 (orarXiv:2309.05361v2 [physics.plasm-ph] for this version)
 https://doi.org/10.48550/arXiv.2309.05361
arXiv-issued DOI via DataCite

Submission history

From: Chengshuo Shen [view email]
[v1] Mon, 11 Sep 2023 10:13:30 UTC (1,880 KB)
[v2] Wed, 1 Nov 2023 09:18:35 UTC (1,644 KB)
Full-text links:

Access Paper:

  • View PDF
  • Other Formats
Current browse context:
physics.plasm-ph
Change to browse by:
export BibTeX citation

Bookmark

BibSonomy logoReddit logo

Bibliographic and Citation Tools

Bibliographic Explorer(What is the Explorer?)
Connected Papers(What is Connected Papers?)
scite Smart Citations(What are Smart Citations?)

Code, Data and Media Associated with this Article

CatalyzeX Code Finder for Papers(What is CatalyzeX?)
Hugging Face(What is Huggingface?)
Papers with Code(What is Papers with Code?)

Demos

Hugging Face Spaces(What is Spaces?)

Recommenders and Search Tools

Influence Flower(What are Influence Flowers?)
CORE Recommender(What is CORE?)

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community?Learn more about arXivLabs.

Which authors of this paper are endorsers? |Disable MathJax (What is MathJax?)

[8]ページ先頭

©2009-2025 Movatter.jp