Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
Cornell University
We gratefully acknowledge support from the Simons Foundation,member institutions, and all contributors.Donate
arxiv logo>cs> arXiv:2307.13428
arXiv logo
Cornell University Logo

Computer Science > Computer Vision and Pattern Recognition

arXiv:2307.13428 (cs)
[Submitted on 25 Jul 2023]

Title:An Explainable Model-Agnostic Algorithm for CNN-based Biometrics Verification

View PDF
Abstract:This paper describes an adaptation of the Local Interpretable Model-Agnostic Explanations (LIME) AI method to operate under a biometric verification setting. LIME was initially proposed for networks with the same output classes used for training, and it employs the softmax probability to determine which regions of the image contribute the most to classification. However, in a verification setting, the classes to be recognized have not been seen during training. In addition, instead of using the softmax output, face descriptors are usually obtained from a layer before the classification layer. The model is adapted to achieve explainability via cosine similarity between feature vectors of perturbated versions of the input image. The method is showcased for face biometrics with two CNN models based on MobileNetv2 and ResNet50.
Subjects:Computer Vision and Pattern Recognition (cs.CV)
Cite as:arXiv:2307.13428 [cs.CV]
 (orarXiv:2307.13428v1 [cs.CV] for this version)
 https://doi.org/10.48550/arXiv.2307.13428
arXiv-issued DOI via DataCite

Submission history

From: Fernando Alonso-Fernandez [view email]
[v1] Tue, 25 Jul 2023 11:51:14 UTC (29,979 KB)
Full-text links:

Access Paper:

  • View PDF
  • TeX Source
  • Other Formats
Current browse context:
cs.CV
Change to browse by:
export BibTeX citation

Bookmark

BibSonomy logoReddit logo

Bibliographic and Citation Tools

Bibliographic Explorer(What is the Explorer?)
Connected Papers(What is Connected Papers?)
scite Smart Citations(What are Smart Citations?)

Code, Data and Media Associated with this Article

CatalyzeX Code Finder for Papers(What is CatalyzeX?)
Hugging Face(What is Huggingface?)
Papers with Code(What is Papers with Code?)

Demos

Hugging Face Spaces(What is Spaces?)

Recommenders and Search Tools

Influence Flower(What are Influence Flowers?)
CORE Recommender(What is CORE?)

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community?Learn more about arXivLabs.

Which authors of this paper are endorsers? |Disable MathJax (What is MathJax?)

[8]ページ先頭

©2009-2025 Movatter.jp