Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
Cornell University

arXiv Is Hiring Software Devs

View Jobs
We gratefully acknowledge support from the Simons Foundation,member institutions, and all contributors.Donate
arxiv logo>cs> arXiv:2306.15848
arXiv logo
Cornell University Logo

Computer Science > Machine Learning

arXiv:2306.15848 (cs)
[Submitted on 28 Jun 2023]

Title:Ordering for Non-Replacement SGD

View PDF
Abstract:One approach for reducing run time and improving efficiency of machine learning is to reduce the convergence rate of the optimization algorithm used. Shuffling is an algorithm technique that is widely used in machine learning, but it only started to gain attention theoretically in recent years. With different convergence rates developed for random shuffling and incremental gradient descent, we seek to find an ordering that can improve the convergence rates for the non-replacement form of the algorithm. Based on existing bounds of the distance between the optimal and current iterate, we derive an upper bound that is dependent on the gradients at the beginning of the epoch. Through analysis of the bound, we are able to develop optimal orderings for constant and decreasing step sizes for strongly convex and convex functions. We further test and verify our results through experiments on synthesis and real data sets. In addition, we are able to combine the ordering with mini-batch and further apply it to more complex neural networks, which show promising results.
Subjects:Machine Learning (cs.LG); Optimization and Control (math.OC)
Cite as:arXiv:2306.15848 [cs.LG]
 (orarXiv:2306.15848v1 [cs.LG] for this version)
 https://doi.org/10.48550/arXiv.2306.15848
arXiv-issued DOI via DataCite

Submission history

From: Yuetong Xu [view email]
[v1] Wed, 28 Jun 2023 00:46:58 UTC (21,385 KB)
Full-text links:

Access Paper:

Current browse context:
cs.LG
Change to browse by:
export BibTeX citation

Bookmark

BibSonomy logoReddit logo

Bibliographic and Citation Tools

Bibliographic Explorer(What is the Explorer?)
Connected Papers(What is Connected Papers?)
scite Smart Citations(What are Smart Citations?)

Code, Data and Media Associated with this Article

CatalyzeX Code Finder for Papers(What is CatalyzeX?)
Hugging Face(What is Huggingface?)
Papers with Code(What is Papers with Code?)

Demos

Hugging Face Spaces(What is Spaces?)

Recommenders and Search Tools

Influence Flower(What are Influence Flowers?)
CORE Recommender(What is CORE?)
IArxiv Recommender(What is IArxiv?)

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community?Learn more about arXivLabs.

Which authors of this paper are endorsers? |Disable MathJax (What is MathJax?)

[8]ページ先頭

©2009-2025 Movatter.jp