Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
Cornell University

Monday, May 5: arXiv will be READ ONLY at 9:00AM EST for approximately 30 minutes. We apologize for any inconvenience.

We gratefully acknowledge support from the Simons Foundation,member institutions, and all contributors.Donate
arxiv logo>cs> arXiv:2306.09463
arXiv logo
Cornell University Logo

Computer Science > Machine Learning

arXiv:2306.09463 (cs)
[Submitted on 15 Jun 2023]

Title:Kriging Convolutional Networks

View PDF
Abstract:Spatial interpolation is a class of estimation problems where locations with known values are used to estimate values at other locations, with an emphasis on harnessing spatial locality and trends. Traditional Kriging methods have strong Gaussian assumptions, and as a result, often fail to capture complexities within the data. Inspired by the recent progress of graph neural networks, we introduce Kriging Convolutional Networks (KCN), a method of combining the advantages of Graph Convolutional Networks (GCN) and Kriging. Compared to standard GCNs, KCNs make direct use of neighboring observations when generating predictions. KCNs also contain the Kriging method as a specific configuration. We further improve the model's performance by adding attention. Empirically, we show that this model outperforms GCNs and Kriging in several applications. The implementation of KCN using PyTorch is publicized at the GitHub repository:this https URL.
Subjects:Machine Learning (cs.LG); Artificial Intelligence (cs.AI)
Cite as:arXiv:2306.09463 [cs.LG]
 (orarXiv:2306.09463v1 [cs.LG] for this version)
 https://doi.org/10.48550/arXiv.2306.09463
arXiv-issued DOI via DataCite
Related DOI:https://doi.org/10.1609/aaai.v34i04.5716
DOI(s) linking to related resources

Submission history

From: Liping Liu [view email]
[v1] Thu, 15 Jun 2023 19:34:14 UTC (1,180 KB)
Full-text links:

Access Paper:

Current browse context:
cs.LG
Change to browse by:
export BibTeX citation

Bookmark

BibSonomy logoReddit logo

Bibliographic and Citation Tools

Bibliographic Explorer(What is the Explorer?)
Connected Papers(What is Connected Papers?)
scite Smart Citations(What are Smart Citations?)

Code, Data and Media Associated with this Article

CatalyzeX Code Finder for Papers(What is CatalyzeX?)
Hugging Face(What is Huggingface?)
Papers with Code(What is Papers with Code?)

Demos

Hugging Face Spaces(What is Spaces?)

Recommenders and Search Tools

Influence Flower(What are Influence Flowers?)
CORE Recommender(What is CORE?)
IArxiv Recommender(What is IArxiv?)

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community?Learn more about arXivLabs.

Which authors of this paper are endorsers? |Disable MathJax (What is MathJax?)

[8]ページ先頭

©2009-2025 Movatter.jp