Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
Cornell University

Monday, May 5: arXiv will be READ ONLY at 9:00AM EST for approximately 30 minutes. We apologize for any inconvenience.

We gratefully acknowledge support from the Simons Foundation,member institutions, and all contributors.Donate
arxiv logo>cs> arXiv:2305.08117
arXiv logo
Cornell University Logo

Computer Science > Computer Vision and Pattern Recognition

arXiv:2305.08117 (cs)
[Submitted on 14 May 2023 (v1), last revised 2 Jun 2024 (this version, v2)]

Title:MBQuant: A Novel Multi-Branch Topology Method for Arbitrary Bit-width Network Quantization

View PDFHTML (experimental)
Abstract:Arbitrary bit-width network quantization has received significant attention due to its high adaptability to various bit-width requirements during runtime. However, in this paper, we investigate existing methods and observe a significant accumulation of quantization errors caused by switching weight and activations bit-widths, leading to limited performance. To address this issue, we propose MBQuant, a novel method that utilizes a multi-branch topology for arbitrary bit-width quantization. MBQuant duplicates the network body into multiple independent branches, where the weights of each branch are quantized to a fixed 2-bit and the activations remain in the input bit-width. The computation of a desired bit-width is completed by selecting an appropriate number of branches that satisfy the original computational constraint. By fixing the weight bit-width, this approach substantially reduces quantization errors caused by switching weight bit-widths. Additionally, we introduce an amortization branch selection strategy to distribute quantization errors caused by switching activation bit-widths among branches to improve performance. Finally, we adopt an in-place distillation strategy that facilitates guidance between branches to further enhance MBQuant's performance. Extensive experiments demonstrate that MBQuant achieves significant performance gains compared to existing arbitrary bit-width quantization methods. Code is atthis https URL.
Subjects:Computer Vision and Pattern Recognition (cs.CV)
Cite as:arXiv:2305.08117 [cs.CV]
 (orarXiv:2305.08117v2 [cs.CV] for this version)
 https://doi.org/10.48550/arXiv.2305.08117
arXiv-issued DOI via DataCite

Submission history

From: Yunshan Zhong [view email]
[v1] Sun, 14 May 2023 10:17:09 UTC (1,381 KB)
[v2] Sun, 2 Jun 2024 08:30:21 UTC (2,418 KB)
Full-text links:

Access Paper:

Current browse context:
cs.CV
Change to browse by:
export BibTeX citation

Bookmark

BibSonomy logoReddit logo

Bibliographic and Citation Tools

Bibliographic Explorer(What is the Explorer?)
Connected Papers(What is Connected Papers?)
scite Smart Citations(What are Smart Citations?)

Code, Data and Media Associated with this Article

CatalyzeX Code Finder for Papers(What is CatalyzeX?)
Hugging Face(What is Huggingface?)
Papers with Code(What is Papers with Code?)

Demos

Hugging Face Spaces(What is Spaces?)

Recommenders and Search Tools

Influence Flower(What are Influence Flowers?)
CORE Recommender(What is CORE?)

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community?Learn more about arXivLabs.

Which authors of this paper are endorsers? |Disable MathJax (What is MathJax?)

[8]ページ先頭

©2009-2025 Movatter.jp