Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
Cornell University

Monday, May 5: arXiv will be READ ONLY at 9:00AM EST for approximately 30 minutes. We apologize for any inconvenience.

We gratefully acknowledge support from the Simons Foundation,member institutions, and all contributors.Donate
arxiv logo>cs> arXiv:2305.05888
arXiv logo
Cornell University Logo

Computer Science > Computer Vision and Pattern Recognition

arXiv:2305.05888 (cs)
[Submitted on 10 May 2023 (v1), last revised 12 May 2023 (this version, v2)]

Title:Distribution-Flexible Subset Quantization for Post-Quantizing Super-Resolution Networks

View PDF
Abstract:This paper introduces Distribution-Flexible Subset Quantization (DFSQ), a post-training quantization method for super-resolution networks. Our motivation for developing DFSQ is based on the distinctive activation distributions of current super-resolution models, which exhibit significant variance across samples and channels. To address this issue, DFSQ conducts channel-wise normalization of the activations and applies distribution-flexible subset quantization (SQ), wherein the quantization points are selected from a universal set consisting of multi-word additive log-scale values. To expedite the selection of quantization points in SQ, we propose a fast quantization points selection strategy that uses K-means clustering to select the quantization points closest to the centroids. Compared to the common iterative exhaustive search algorithm, our strategy avoids the enumeration of all possible combinations in the universal set, reducing the time complexity from exponential to linear. Consequently, the constraint of time costs on the size of the universal set is greatly relaxed. Extensive evaluations of various super-resolution models show that DFSQ effectively retains performance even without fine-tuning. For example, when quantizing EDSRx2 on the Urban benchmark, DFSQ achieves comparable performance to full-precision counterparts on 6- and 8-bit quantization, and incurs only a 0.1 dB PSNR drop on 4-bit quantization. Code is at \url{this https URL}
Subjects:Computer Vision and Pattern Recognition (cs.CV)
Cite as:arXiv:2305.05888 [cs.CV]
 (orarXiv:2305.05888v2 [cs.CV] for this version)
 https://doi.org/10.48550/arXiv.2305.05888
arXiv-issued DOI via DataCite

Submission history

From: Yunshan Zhong [view email]
[v1] Wed, 10 May 2023 04:19:11 UTC (1,372 KB)
[v2] Fri, 12 May 2023 04:43:47 UTC (1,372 KB)
Full-text links:

Access Paper:

  • View PDF
  • TeX Source
  • Other Formats
Current browse context:
cs.CV
Change to browse by:
export BibTeX citation

Bookmark

BibSonomy logoReddit logo

Bibliographic and Citation Tools

Bibliographic Explorer(What is the Explorer?)
Connected Papers(What is Connected Papers?)
scite Smart Citations(What are Smart Citations?)

Code, Data and Media Associated with this Article

CatalyzeX Code Finder for Papers(What is CatalyzeX?)
Hugging Face(What is Huggingface?)
Papers with Code(What is Papers with Code?)

Demos

Hugging Face Spaces(What is Spaces?)

Recommenders and Search Tools

Influence Flower(What are Influence Flowers?)
CORE Recommender(What is CORE?)

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community?Learn more about arXivLabs.

Which authors of this paper are endorsers? |Disable MathJax (What is MathJax?)

[8]ページ先頭

©2009-2025 Movatter.jp