Movatterモバイル変換


[0]ホーム

URL:


close this message
arXiv smileybones

arXiv Is Hiring Software Developers

Work on one of the world's most important websites and make an impact on open science.

View Jobs
Skip to main content
Cornell University

arXiv Is Hiring Software Devs

View Jobs
We gratefully acknowledge support from the Simons Foundation,member institutions, and all contributors.Donate
arxiv logo>cs> arXiv:2303.05670
arXiv logo
Cornell University Logo

Computer Science > Computation and Language

arXiv:2303.05670 (cs)
[Submitted on 10 Mar 2023]

Title:Logic Against Bias: Textual Entailment Mitigates Stereotypical Sentence Reasoning

View PDF
Abstract:Due to their similarity-based learning objectives, pretrained sentence encoders often internalize stereotypical assumptions that reflect the social biases that exist within their training corpora. In this paper, we describe several kinds of stereotypes concerning different communities that are present in popular sentence representation models, including pretrained next sentence prediction and contrastive sentence representation models. We compare such models to textual entailment models that learn language logic for a variety of downstream language understanding tasks. By comparing strong pretrained models based on text similarity with textual entailment learning, we conclude that the explicit logic learning with textual entailment can significantly reduce bias and improve the recognition of social communities, without an explicit de-biasing process
Comments:Accepted by EACL 2023
Subjects:Computation and Language (cs.CL); Artificial Intelligence (cs.AI); Computers and Society (cs.CY)
Cite as:arXiv:2303.05670 [cs.CL]
 (orarXiv:2303.05670v1 [cs.CL] for this version)
 https://doi.org/10.48550/arXiv.2303.05670
arXiv-issued DOI via DataCite

Submission history

From: Hongyin Luo [view email]
[v1] Fri, 10 Mar 2023 02:52:13 UTC (7,132 KB)
Full-text links:

Access Paper:

  • View PDF
  • TeX Source
  • Other Formats
Current browse context:
cs.CL
Change to browse by:
export BibTeX citation

Bookmark

BibSonomy logoReddit logo

Bibliographic and Citation Tools

Bibliographic Explorer(What is the Explorer?)
Connected Papers(What is Connected Papers?)
scite Smart Citations(What are Smart Citations?)

Code, Data and Media Associated with this Article

CatalyzeX Code Finder for Papers(What is CatalyzeX?)
Hugging Face(What is Huggingface?)
Papers with Code(What is Papers with Code?)

Demos

Hugging Face Spaces(What is Spaces?)

Recommenders and Search Tools

Influence Flower(What are Influence Flowers?)
CORE Recommender(What is CORE?)

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community?Learn more about arXivLabs.

Which authors of this paper are endorsers? |Disable MathJax (What is MathJax?)

[8]ページ先頭

©2009-2025 Movatter.jp