Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
Cornell University
We gratefully acknowledge support from the Simons Foundation,member institutions, and all contributors.Donate
arxiv logo>cs> arXiv:2302.13258
arXiv logo
Cornell University Logo

Computer Science > Distributed, Parallel, and Cluster Computing

arXiv:2302.13258 (cs)
[Submitted on 26 Feb 2023]

Title:Post Quantum Secure Blockchain-based Federated Learning for Mobile Edge Computing

View PDF
Abstract:Mobile Edge Computing (MEC) has been a promising paradigm for communicating and edge processing of data on the move. We aim to employ Federated Learning (FL) and prominent features of blockchain into MEC architecture such as connected autonomous vehicles to enable complete decentralization, immutability, and rewarding mechanisms simultaneously. FL is advantageous for mobile devices with constrained connectivity since it requires model updates to be delivered to a central point instead of substantial amounts of data communication. For instance, FL in autonomous, connected vehicles can increase data diversity and allow model customization, and predictions are possible even when the vehicles are not connected (by exploiting their local models) for short times. However, existing synchronous FL and Blockchain incur extremely high communication costs due to mobility-induced impairments and do not apply directly to MEC networks. We propose a fully asynchronous Blockchained Federated Learning (BFL) framework referred to as BFL-MEC, in which the mobile clients and their models evolve independently yet guarantee stability in the global learning process. More importantly, we employ post-quantum secure features over BFL-MEC to verify the client's identity and defend against malicious attacks. All of our design assumptions and results are evaluated with extensive simulations.
Comments:15 pages, 9 figures, 2 tables. Under Review
Subjects:Distributed, Parallel, and Cluster Computing (cs.DC); Cryptography and Security (cs.CR); Machine Learning (cs.LG)
Cite as:arXiv:2302.13258 [cs.DC]
 (orarXiv:2302.13258v1 [cs.DC] for this version)
 https://doi.org/10.48550/arXiv.2302.13258
arXiv-issued DOI via DataCite

Submission history

From: Rongxin Xu [view email]
[v1] Sun, 26 Feb 2023 08:08:23 UTC (1,206 KB)
Full-text links:

Access Paper:

  • View PDF
  • TeX Source
  • Other Formats
Current browse context:
cs.DC
Change to browse by:
export BibTeX citation

Bookmark

BibSonomy logoReddit logo

Bibliographic and Citation Tools

Bibliographic Explorer(What is the Explorer?)
Connected Papers(What is Connected Papers?)
scite Smart Citations(What are Smart Citations?)

Code, Data and Media Associated with this Article

CatalyzeX Code Finder for Papers(What is CatalyzeX?)
Hugging Face(What is Huggingface?)
Papers with Code(What is Papers with Code?)

Demos

Hugging Face Spaces(What is Spaces?)

Recommenders and Search Tools

Influence Flower(What are Influence Flowers?)
CORE Recommender(What is CORE?)

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community?Learn more about arXivLabs.

Which authors of this paper are endorsers? |Disable MathJax (What is MathJax?)

[8]ページ先頭

©2009-2025 Movatter.jp