Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
Cornell University

Monday, May 5: arXiv will be READ ONLY at 9:00AM EST for approximately 30 minutes. We apologize for any inconvenience.

We gratefully acknowledge support from the Simons Foundation,member institutions, and all contributors.Donate
arxiv logo>cs> arXiv:2302.12029
arXiv logo
Cornell University Logo

Computer Science > Data Structures and Algorithms

arXiv:2302.12029 (cs)
[Submitted on 23 Feb 2023]

Title:Online Minimum Spanning Trees with Weight Predictions

View PDF
Abstract:We consider the minimum spanning tree problem with predictions, using the weight-arrival model, i.e., the graph is given, together with predictions for the weights of all edges. Then the actual weights arrive one at a time and an irrevocable decision must be made regarding whether or not the edge should be included into the spanning tree. In order to assess the quality of our algorithms, we define an appropriate error measure and analyze the performance of the algorithms as a function of the error. We prove that, according to competitive analysis, the simplest algorithm, Follow-the-Predictions, is optimal. However, intuitively, one should be able to do better, and we present a greedy variant of Follow-the-Predictions. In analyzing that algorithm, we believe we present the first random order analysis of a non-trivial online algorithm with predictions, by which we obtain an algorithmic separation. This may be useful for distinguishing between algorithms for other problems when Follow-the-Predictions is optimal according to competitive analysis.
Subjects:Data Structures and Algorithms (cs.DS)
Cite as:arXiv:2302.12029 [cs.DS]
 (orarXiv:2302.12029v1 [cs.DS] for this version)
 https://doi.org/10.48550/arXiv.2302.12029
arXiv-issued DOI via DataCite

Submission history

From: Kim S. Larsen [view email]
[v1] Thu, 23 Feb 2023 13:43:24 UTC (20 KB)
Full-text links:

Access Paper:

Current browse context:
cs.DS
Change to browse by:
export BibTeX citation

Bookmark

BibSonomy logoReddit logo

Bibliographic and Citation Tools

Bibliographic Explorer(What is the Explorer?)
Connected Papers(What is Connected Papers?)
scite Smart Citations(What are Smart Citations?)

Code, Data and Media Associated with this Article

CatalyzeX Code Finder for Papers(What is CatalyzeX?)
Hugging Face(What is Huggingface?)
Papers with Code(What is Papers with Code?)

Demos

Hugging Face Spaces(What is Spaces?)

Recommenders and Search Tools

Influence Flower(What are Influence Flowers?)
CORE Recommender(What is CORE?)

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community?Learn more about arXivLabs.

Which authors of this paper are endorsers? |Disable MathJax (What is MathJax?)

[8]ページ先頭

©2009-2025 Movatter.jp