Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
Cornell University
We gratefully acknowledge support from the Simons Foundation,member institutions, and all contributors.Donate
arxiv logo>cs> arXiv:2301.03359
arXiv logo
Cornell University Logo

Computer Science > Networking and Internet Architecture

arXiv:2301.03359 (cs)
[Submitted on 31 Dec 2022]

Title:Digital Twin-Enabled Domain Adaptation for Zero-Touch UAV Networks: Survey and Challenges

View PDF
Abstract:In existing wireless networks, the control programs have been designed manually and for certain predefined scenarios. This process is complicated and error-prone, and the resulting control programs are not resilient to disruptive changes. Data-driven control based on Artificial Intelligence and Machine Learning (AI/ML) has been envisioned as a key technique to automate the modeling, optimization and control of complex wireless systems. However, existing AI/ML techniques rely on sufficient well-labeled data and may suffer from slow convergence and poor generalizability. In this article, focusing on digital twin-assisted wireless unmanned aerial vehicle (UAV) systems, we provide a survey of emerging techniques that can enable fast-converging data-driven control of wireless systems with enhanced generalization capability to new environments. These include SLAM-based sensing and network softwarization for digital twin construction, robust reinforcement learning and system identification for domain adaptation, and testing facility sharing and federation. The corresponding research opportunities are also discussed.
Subjects:Networking and Internet Architecture (cs.NI); Systems and Control (eess.SY)
Cite as:arXiv:2301.03359 [cs.NI]
 (orarXiv:2301.03359v1 [cs.NI] for this version)
 https://doi.org/10.48550/arXiv.2301.03359
arXiv-issued DOI via DataCite

Submission history

From: Maxwell McManus [view email]
[v1] Sat, 31 Dec 2022 19:03:02 UTC (2,355 KB)
Full-text links:

Access Paper:

  • View PDF
  • TeX Source
  • Other Formats
Current browse context:
cs.NI
Change to browse by:
export BibTeX citation

Bookmark

BibSonomy logoReddit logo

Bibliographic and Citation Tools

Bibliographic Explorer(What is the Explorer?)
Connected Papers(What is Connected Papers?)
scite Smart Citations(What are Smart Citations?)

Code, Data and Media Associated with this Article

CatalyzeX Code Finder for Papers(What is CatalyzeX?)
Hugging Face(What is Huggingface?)
Papers with Code(What is Papers with Code?)

Demos

Hugging Face Spaces(What is Spaces?)

Recommenders and Search Tools

Influence Flower(What are Influence Flowers?)
CORE Recommender(What is CORE?)

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community?Learn more about arXivLabs.

Which authors of this paper are endorsers? |Disable MathJax (What is MathJax?)

[8]ページ先頭

©2009-2025 Movatter.jp