Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
Cornell University
We gratefully acknowledge support from the Simons Foundation,member institutions, and all contributors.Donate
arxiv logo>cs> arXiv:2212.14234
arXiv logo
Cornell University Logo

Computer Science > Networking and Internet Architecture

arXiv:2212.14234 (cs)
[Submitted on 29 Dec 2022]

Title:Multi-Agent Deep Reinforcement Learning Based Resource Management in SWIPT Enabled Cellular Networks with H2H/M2M Co-Existence

View PDF
Abstract:Machine-to-Machine (M2M) communication is crucial in developing Internet of Things (IoT). As it is well known that cellular networks have been considered as the primary infrastructure for M2M communications, there are several key issues to be addressed in order to deploy M2M communications over cellular networks. Notably, the rapid growth of M2M traffic dramatically increases energy consumption, as well as degrades the performance of existing Human-to-Human (H2H) traffic. Sustainable operation technology and resource management are efficacious ways for solving these issues. In this paper, we investigate a resource management problem in cellular networks with H2H/M2M coexistence. First, considering the energy-constrained nature of machine type communication devices (MTCDs), we propose a novel network model enabled by simultaneous wireless information and power transfer (SWIPT), which empowers MTCDs with the ability to simultaneously perform energy harvesting (EH) and information decoding. Given the diverse characteristics of IoT devices, we subdivide MTCDs into critical and tolerable types, further formulating the resource management problem as an energy efficiency (EE) maximization problem under divers Quality-of-Service (QoS) constraints. Then, we develop a multi-agent deep reinforcement learning (DRL) based scheme to solve this problem. It provides optimal spectrum, transmit power and power splitting (PS) ratio allocation policies, along with efficient model training under designed behaviour-tracking based state space and common reward function. Finally, we verify that with a reasonable training mechanism, multiple M2M agents successfully work cooperatively in a distributed way, resulting in network performance that outperforms other intelligence approaches in terms of convergence speed and meeting the EE and QoS requirements.
Subjects:Networking and Internet Architecture (cs.NI)
Cite as:arXiv:2212.14234 [cs.NI]
 (orarXiv:2212.14234v1 [cs.NI] for this version)
 https://doi.org/10.48550/arXiv.2212.14234
arXiv-issued DOI via DataCite

Submission history

From: Xing Wei [view email]
[v1] Thu, 29 Dec 2022 09:08:33 UTC (2,008 KB)
Full-text links:

Access Paper:

  • View PDF
  • TeX Source
  • Other Formats
Current browse context:
cs.NI
Change to browse by:
export BibTeX citation

Bookmark

BibSonomy logoReddit logo

Bibliographic and Citation Tools

Bibliographic Explorer(What is the Explorer?)
Connected Papers(What is Connected Papers?)
scite Smart Citations(What are Smart Citations?)

Code, Data and Media Associated with this Article

CatalyzeX Code Finder for Papers(What is CatalyzeX?)
Hugging Face(What is Huggingface?)
Papers with Code(What is Papers with Code?)

Demos

Hugging Face Spaces(What is Spaces?)

Recommenders and Search Tools

Influence Flower(What are Influence Flowers?)
CORE Recommender(What is CORE?)

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community?Learn more about arXivLabs.

Which authors of this paper are endorsers? |Disable MathJax (What is MathJax?)

[8]ページ先頭

©2009-2025 Movatter.jp