Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
Cornell University

Monday, May 5: arXiv will be READ ONLY at 9:00AM EST for approximately 30 minutes. We apologize for any inconvenience.

We gratefully acknowledge support from the Simons Foundation,member institutions, and all contributors.Donate
arxiv logo>cs> arXiv:2212.08459
arXiv logo
Cornell University Logo

Computer Science > Computation and Language

arXiv:2212.08459 (cs)
[Submitted on 16 Dec 2022]

Title:Experiments on Generalizability of BERTopic on Multi-Domain Short Text

View PDF
Abstract:Topic modeling is widely used for analytically evaluating large collections of textual data. One of the most popular topic techniques is Latent Dirichlet Allocation (LDA), which is flexible and adaptive, but not optimal for e.g. short texts from various domains. We explore how the state-of-the-art BERTopic algorithm performs on short multi-domain text and find that it generalizes better than LDA in terms of topic coherence and diversity. We further analyze the performance of the HDBSCAN clustering algorithm utilized by BERTopic and find that it classifies a majority of the documents as outliers. This crucial, yet overseen problem excludes too many documents from further analysis. When we replace HDBSCAN with k-Means, we achieve similar performance, but without outliers.
Comments:Accepted poster presentation at WiNLP 2022, as a part of EMNLP 2022, 2 pages
Subjects:Computation and Language (cs.CL)
Cite as:arXiv:2212.08459 [cs.CL]
 (orarXiv:2212.08459v1 [cs.CL] for this version)
 https://doi.org/10.48550/arXiv.2212.08459
arXiv-issued DOI via DataCite

Submission history

From: Marcel Haas [view email]
[v1] Fri, 16 Dec 2022 13:07:39 UTC (44 KB)
Full-text links:

Access Paper:

  • View PDF
  • TeX Source
  • Other Formats
Current browse context:
cs.CL
Change to browse by:
export BibTeX citation

Bookmark

BibSonomy logoReddit logo

Bibliographic and Citation Tools

Bibliographic Explorer(What is the Explorer?)
Connected Papers(What is Connected Papers?)
scite Smart Citations(What are Smart Citations?)

Code, Data and Media Associated with this Article

CatalyzeX Code Finder for Papers(What is CatalyzeX?)
Hugging Face(What is Huggingface?)
Papers with Code(What is Papers with Code?)

Demos

Hugging Face Spaces(What is Spaces?)

Recommenders and Search Tools

Influence Flower(What are Influence Flowers?)
CORE Recommender(What is CORE?)

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community?Learn more about arXivLabs.

Which authors of this paper are endorsers? |Disable MathJax (What is MathJax?)

[8]ページ先頭

©2009-2025 Movatter.jp