Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
Cornell University
We gratefully acknowledge support from the Simons Foundation,member institutions, and all contributors.Donate
arxiv logo>cs> arXiv:2211.02448
arXiv logo
Cornell University Logo

Computer Science > Sound

arXiv:2211.02448 (cs)
[Submitted on 4 Nov 2022]

Title:NoreSpeech: Knowledge Distillation based Conditional Diffusion Model for Noise-robust Expressive TTS

View PDF
Abstract:Expressive text-to-speech (TTS) can synthesize a new speaking style by imiating prosody and timbre from a reference audio, which faces the following challenges: (1) The highly dynamic prosody information in the reference audio is difficult to extract, especially, when the reference audio contains background noise. (2) The TTS systems should have good generalization for unseen speaking styles. In this paper, we present a \textbf{no}ise-\textbf{r}obust \textbf{e}xpressive TTS model (NoreSpeech), which can robustly transfer speaking style in a noisy reference utterance to synthesized speech. Specifically, our NoreSpeech includes several components: (1) a novel DiffStyle module, which leverages powerful probabilistic denoising diffusion models to learn noise-agnostic speaking style features from a teacher model by knowledge distillation; (2) a VQ-VAE block, which maps the style features into a controllable quantized latent space for improving the generalization of style transfer; and (3) a straight-forward but effective parameter-free text-style alignment module, which enables NoreSpeech to transfer style to a textual input from a length-mismatched reference utterance. Experiments demonstrate that NoreSpeech is more effective than previous expressive TTS models in noise environments. Audio samples and code are available at: \href{this http URL\_demo/}{this http URL\_demo/}
Comments:Submitted to ICASSP2023
Subjects:Sound (cs.SD); Audio and Speech Processing (eess.AS)
Cite as:arXiv:2211.02448 [cs.SD]
 (orarXiv:2211.02448v1 [cs.SD] for this version)
 https://doi.org/10.48550/arXiv.2211.02448
arXiv-issued DOI via DataCite

Submission history

From: Dongchao Yang [view email]
[v1] Fri, 4 Nov 2022 13:32:58 UTC (5,255 KB)
Full-text links:

Access Paper:

  • View PDF
  • TeX Source
  • Other Formats
Current browse context:
cs.SD
Change to browse by:
export BibTeX citation

Bookmark

BibSonomy logoReddit logo

Bibliographic and Citation Tools

Bibliographic Explorer(What is the Explorer?)
Connected Papers(What is Connected Papers?)
scite Smart Citations(What are Smart Citations?)

Code, Data and Media Associated with this Article

CatalyzeX Code Finder for Papers(What is CatalyzeX?)
Hugging Face(What is Huggingface?)
Papers with Code(What is Papers with Code?)

Demos

Hugging Face Spaces(What is Spaces?)

Recommenders and Search Tools

Influence Flower(What are Influence Flowers?)
CORE Recommender(What is CORE?)

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community?Learn more about arXivLabs.

Which authors of this paper are endorsers? |Disable MathJax (What is MathJax?)

[8]ページ先頭

©2009-2025 Movatter.jp