Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
Cornell University
We gratefully acknowledge support from the Simons Foundation,member institutions, and all contributors.Donate
arxiv logo>eess> arXiv:2211.00094
arXiv logo
Cornell University Logo

Electrical Engineering and Systems Science > Systems and Control

arXiv:2211.00094 (eess)
[Submitted on 31 Oct 2022]

Title:RIS-enhanced Resilience in Cell-Free MIMO

View PDF
Abstract:More and more applications that require high reliability and fault tolerance are realized with wireless network architectures and thus ultimately rely on the wireless channels, which can be subject to impairments and blockages. Hence, these architectures require a backup plan in the physical layer in order to guarantee functionality, especially when safety-relevant aspects are involved. To this end, this work proposes to utilize the reconfigurable intelligent surface (RIS) as a resilience mechanism to counteract outages. The advantages of RISs for such a purpose derive from their inherent addition of alternative channel links in combination with their reconfigurability. The major benefits are investigated in a cell-free multiple-input and multiple-output (MIMO) setting, in which the direct channel paths are subject to blockages. An optimization problem is formulated that includes rate allocation with beamforming and phase shift configuration and is solved with a resilience-aware alternating optimization approach. Numerical results show that deploying even a randomly-configured RIS to a network reduces the performance degradation caused by blockages. This becomes even more pronounced in the optimized case, in which the RIS is able to potentially counteract the performance degradation entirely. Interestingly, adding more reflecting elements to the system brings an overall benefit for the resilience, even for time-sensitive systems, due to the contribution of the RIS reflections, even when unoptimized.
Comments:6 pages, 6 figures, submitted to International ITG 26th Workshop on Smart Antennas and 13th Conference on Systems, Communications, and Coding (WSA&SCC2023)
Subjects:Systems and Control (eess.SY)
Cite as:arXiv:2211.00094 [eess.SY]
 (orarXiv:2211.00094v1 [eess.SY] for this version)
 https://doi.org/10.48550/arXiv.2211.00094
arXiv-issued DOI via DataCite

Submission history

From: Kevin Weinberger [view email]
[v1] Mon, 31 Oct 2022 19:00:03 UTC (953 KB)
Full-text links:

Access Paper:

Current browse context:
eess.SY
Change to browse by:
export BibTeX citation

Bookmark

BibSonomy logoReddit logo

Bibliographic and Citation Tools

Bibliographic Explorer(What is the Explorer?)
Connected Papers(What is Connected Papers?)
scite Smart Citations(What are Smart Citations?)

Code, Data and Media Associated with this Article

CatalyzeX Code Finder for Papers(What is CatalyzeX?)
Hugging Face(What is Huggingface?)
Papers with Code(What is Papers with Code?)

Demos

Hugging Face Spaces(What is Spaces?)

Recommenders and Search Tools

Influence Flower(What are Influence Flowers?)
CORE Recommender(What is CORE?)

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community?Learn more about arXivLabs.

Which authors of this paper are endorsers? |Disable MathJax (What is MathJax?)

[8]ページ先頭

©2009-2025 Movatter.jp