Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
Cornell University

Monday, May 5: arXiv will be READ ONLY at 9:00AM EST for approximately 30 minutes. We apologize for any inconvenience.

We gratefully acknowledge support from the Simons Foundation,member institutions, and all contributors.Donate
arxiv logo>cs> arXiv:2210.14252
arXiv logo
Cornell University Logo

Computer Science > Sound

arXiv:2210.14252 (cs)
[Submitted on 25 Oct 2022]

Title:Dynamic Speech Endpoint Detection with Regression Targets

View PDF
Abstract:Interactive voice assistants have been widely used as input interfaces in various scenarios, e.g. on smart homes devices, wearables and on AR devices. Detecting the end of a speech query, i.e. speech end-pointing, is an important task for voice assistants to interact with users. Traditionally, speech end-pointing is based on pure classification methods along with arbitrary binary targets. In this paper, we propose a novel regression-based speech end-pointing model, which enables an end-pointer to adjust its detection behavior based on context of user queries. Specifically, we present a pause modeling method and show its effectiveness for dynamic end-pointing. Based on our experiments with vendor-collected smartphone and wearables speech queries, our strategy shows a better trade-off between endpointing latency and accuracy, compared to the traditional classification-based method. We further discuss the benefits of this model and generalization of the framework in the paper.
Comments:Manuscript submitted to ICASSP 2023
Subjects:Sound (cs.SD); Audio and Speech Processing (eess.AS)
Cite as:arXiv:2210.14252 [cs.SD]
 (orarXiv:2210.14252v1 [cs.SD] for this version)
 https://doi.org/10.48550/arXiv.2210.14252
arXiv-issued DOI via DataCite

Submission history

From: Dawei Liang [view email]
[v1] Tue, 25 Oct 2022 18:09:42 UTC (304 KB)
Full-text links:

Access Paper:

  • View PDF
  • TeX Source
  • Other Formats
Current browse context:
cs.SD
Change to browse by:
export BibTeX citation

Bookmark

BibSonomy logoReddit logo

Bibliographic and Citation Tools

Bibliographic Explorer(What is the Explorer?)
Connected Papers(What is Connected Papers?)
scite Smart Citations(What are Smart Citations?)

Code, Data and Media Associated with this Article

CatalyzeX Code Finder for Papers(What is CatalyzeX?)
Hugging Face(What is Huggingface?)
Papers with Code(What is Papers with Code?)

Demos

Hugging Face Spaces(What is Spaces?)

Recommenders and Search Tools

Influence Flower(What are Influence Flowers?)
CORE Recommender(What is CORE?)

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community?Learn more about arXivLabs.

Which authors of this paper are endorsers? |Disable MathJax (What is MathJax?)

[8]ページ先頭

©2009-2025 Movatter.jp