Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
Cornell University
We gratefully acknowledge support from the Simons Foundation,member institutions, and all contributors.Donate
arxiv logo>cs> arXiv:2210.05177
arXiv logo
Cornell University Logo

Computer Science > Machine Learning

arXiv:2210.05177 (cs)
[Submitted on 11 Oct 2022 (v1), last revised 23 Oct 2022 (this version, v2)]

Title:Make Sharpness-Aware Minimization Stronger: A Sparsified Perturbation Approach

View PDF
Abstract:Deep neural networks often suffer from poor generalization caused by complex and non-convex loss landscapes. One of the popular solutions is Sharpness-Aware Minimization (SAM), which smooths the loss landscape via minimizing the maximized change of training loss when adding a perturbation to the weight. However, we find the indiscriminate perturbation of SAM on all parameters is suboptimal, which also results in excessive computation, i.e., double the overhead of common optimizers like Stochastic Gradient Descent (SGD). In this paper, we propose an efficient and effective training scheme coined as Sparse SAM (SSAM), which achieves sparse perturbation by a binary mask. To obtain the sparse mask, we provide two solutions which are based onFisher information and dynamic sparse training, respectively. In addition, we theoretically prove that SSAM can converge at the same rate as SAM, i.e., $O(\log T/\sqrt{T})$. Sparse SAM not only has the potential for training acceleration but also smooths the loss landscape effectively. Extensive experimental results on CIFAR10, CIFAR100, and ImageNet-1K confirm the superior efficiency of our method to SAM, and the performance is preserved or even better with a perturbation of merely 50% sparsity. Code is availiable atthis https URL.
Comments:20 pages, 5figures, accepted by NeurIPS 2022
Subjects:Machine Learning (cs.LG); Artificial Intelligence (cs.AI); Computer Vision and Pattern Recognition (cs.CV); Optimization and Control (math.OC)
Cite as:arXiv:2210.05177 [cs.LG]
 (orarXiv:2210.05177v2 [cs.LG] for this version)
 https://doi.org/10.48550/arXiv.2210.05177
arXiv-issued DOI via DataCite

Submission history

From: Peng Mi [view email]
[v1] Tue, 11 Oct 2022 06:30:10 UTC (1,794 KB)
[v2] Sun, 23 Oct 2022 13:19:20 UTC (1,784 KB)
Full-text links:

Access Paper:

  • View PDF
  • TeX Source
  • Other Formats
Current browse context:
cs.LG
Change to browse by:
export BibTeX citation

Bookmark

BibSonomy logoReddit logo

Bibliographic and Citation Tools

Bibliographic Explorer(What is the Explorer?)
Connected Papers(What is Connected Papers?)
scite Smart Citations(What are Smart Citations?)

Code, Data and Media Associated with this Article

CatalyzeX Code Finder for Papers(What is CatalyzeX?)
Hugging Face(What is Huggingface?)
Papers with Code(What is Papers with Code?)

Demos

Hugging Face Spaces(What is Spaces?)

Recommenders and Search Tools

Influence Flower(What are Influence Flowers?)
CORE Recommender(What is CORE?)
IArxiv Recommender(What is IArxiv?)

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community?Learn more about arXivLabs.

Which authors of this paper are endorsers? |Disable MathJax (What is MathJax?)

[8]ページ先頭

©2009-2025 Movatter.jp