Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
Cornell University

arXiv Is Hiring Software Devs

View Jobs
We gratefully acknowledge support from the Simons Foundation,member institutions, and all contributors.Donate
arxiv logo>cs> arXiv:2209.12061
arXiv logo
Cornell University Logo

Computer Science > Computer Vision and Pattern Recognition

arXiv:2209.12061 (cs)
[Submitted on 24 Sep 2022]

Title:Global Semantic Descriptors for Zero-Shot Action Recognition

View PDF
Abstract:The success of Zero-shot Action Recognition (ZSAR) methods is intrinsically related to the nature of semantic side information used to transfer knowledge, although this aspect has not been primarily investigated in the literature. This work introduces a new ZSAR method based on the relationships of actions-objects and actions-descriptive sentences. We demonstrate that representing all object classes using descriptive sentences generates an accurate object-action affinity estimation when a paraphrase estimation method is used as an embedder. We also show how to estimate probabilities over the set of action classes based only on a set of sentences without hard human labeling. In our method, the probabilities from these two global classifiers (i.e., which use features computed over the entire video) are combined, producing an efficient transfer knowledge model for action classification. Our results are state-of-the-art in the Kinetics-400 dataset and are competitive on UCF-101 under the ZSAR evaluation. Our code is available atthis https URL
Subjects:Computer Vision and Pattern Recognition (cs.CV)
Cite as:arXiv:2209.12061 [cs.CV]
 (orarXiv:2209.12061v1 [cs.CV] for this version)
 https://doi.org/10.48550/arXiv.2209.12061
arXiv-issued DOI via DataCite
Journal reference:IEEE Signal Processing Letters, vol. 29, pp. 1843-1847, 2022
Related DOI:https://doi.org/10.1109/LSP.2022.3200605
DOI(s) linking to related resources

Submission history

From: Rayson Laroca [view email]
[v1] Sat, 24 Sep 2022 18:15:47 UTC (1,433 KB)
Full-text links:

Access Paper:

  • View PDF
  • TeX Source
  • Other Formats
Current browse context:
cs.CV
Change to browse by:
export BibTeX citation

Bookmark

BibSonomy logoReddit logo

Bibliographic and Citation Tools

Bibliographic Explorer(What is the Explorer?)
Connected Papers(What is Connected Papers?)
scite Smart Citations(What are Smart Citations?)

Code, Data and Media Associated with this Article

CatalyzeX Code Finder for Papers(What is CatalyzeX?)
Hugging Face(What is Huggingface?)
Papers with Code(What is Papers with Code?)

Demos

Hugging Face Spaces(What is Spaces?)

Recommenders and Search Tools

Influence Flower(What are Influence Flowers?)
CORE Recommender(What is CORE?)

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community?Learn more about arXivLabs.

Which authors of this paper are endorsers? |Disable MathJax (What is MathJax?)

[8]ページ先頭

©2009-2025 Movatter.jp