Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
Cornell University
We gratefully acknowledge support from the Simons Foundation,member institutions, and all contributors.Donate
arxiv logo>cs> arXiv:2209.01059
arXiv logo
Cornell University Logo

Computer Science > Human-Computer Interaction

arXiv:2209.01059 (cs)
[Submitted on 2 Sep 2022]

Title:In-Place Gestures Classification via Long-term Memory Augmented Network

View PDF
Abstract:In-place gesture-based virtual locomotion techniques enable users to control their viewpoint and intuitively move in the 3D virtual environment. A key research problem is to accurately and quickly recognize in-place gestures, since they can trigger specific movements of virtual viewpoints and enhance user experience. However, to achieve real-time experience, only short-term sensor sequence data (up to about 300ms, 6 to 10 frames) can be taken as input, which actually affects the classification performance due to limited spatio-temporal information. In this paper, we propose a novel long-term memory augmented network for in-place gestures classification. It takes as input both short-term gesture sequence samples and their corresponding long-term sequence samples that provide extra relevant spatio-temporal information in the training phase. We store long-term sequence features with an external memory queue. In addition, we design a memory augmented loss to help cluster features of the same class and push apart features from different classes, thus enabling our memory queue to memorize more relevant long-term sequence features. In the inference phase, we input only short-term sequence samples to recall the stored features accordingly, and fuse them together to predict the gesture class. We create a large-scale in-place gestures dataset from 25 participants with 11 gestures. Our method achieves a promising accuracy of 95.1% with a latency of 192ms, and an accuracy of 97.3% with a latency of 312ms, and is demonstrated to be superior to recent in-place gesture classification techniques. User study also validates our approach. Our source code and dataset will be made available to the community.
Comments:This paper is accepted to IEEE ISMAR2022
Subjects:Human-Computer Interaction (cs.HC)
Cite as:arXiv:2209.01059 [cs.HC]
 (orarXiv:2209.01059v1 [cs.HC] for this version)
 https://doi.org/10.48550/arXiv.2209.01059
arXiv-issued DOI via DataCite

Submission history

From: Zhao Lizhi [view email]
[v1] Fri, 2 Sep 2022 13:50:24 UTC (3,166 KB)
Full-text links:

Access Paper:

  • View PDF
  • TeX Source
  • Other Formats
Current browse context:
cs.HC
Change to browse by:
export BibTeX citation

Bookmark

BibSonomy logoReddit logo

Bibliographic and Citation Tools

Bibliographic Explorer(What is the Explorer?)
Connected Papers(What is Connected Papers?)
scite Smart Citations(What are Smart Citations?)

Code, Data and Media Associated with this Article

CatalyzeX Code Finder for Papers(What is CatalyzeX?)
Hugging Face(What is Huggingface?)
Papers with Code(What is Papers with Code?)

Demos

Hugging Face Spaces(What is Spaces?)

Recommenders and Search Tools

Influence Flower(What are Influence Flowers?)
CORE Recommender(What is CORE?)

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community?Learn more about arXivLabs.

Which authors of this paper are endorsers? |Disable MathJax (What is MathJax?)

[8]ページ先頭

©2009-2025 Movatter.jp