Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
Cornell University
We gratefully acknowledge support from the Simons Foundation,member institutions, and all contributors.Donate
arxiv logo>cs> arXiv:2209.00475
arXiv logo
Cornell University Logo

Computer Science > Computer Vision and Pattern Recognition

arXiv:2209.00475 (cs)
[Submitted on 1 Sep 2022]

Title:REMOT: A Region-to-Whole Framework for Realistic Human Motion Transfer

View PDF
Abstract:Human Video Motion Transfer (HVMT) aims to, given an image of a source person, generate his/her video that imitates the motion of the driving person. Existing methods for HVMT mainly exploit Generative Adversarial Networks (GANs) to perform the warping operation based on the flow estimated from the source person image and each driving video frame. However, these methods always generate obvious artifacts due to the dramatic differences in poses, scales, and shifts between the source person and the driving person. To overcome these challenges, this paper presents a novel REgionto-whole human MOtion Transfer (REMOT) framework based on GANs. To generate realistic motions, the REMOT adopts a progressive generation paradigm: it first generates each body part in the driving pose without flow-based warping, then composites all parts into a complete person of the driving motion. Moreover, to preserve the natural global appearance, we design a Global Alignment Module to align the scale and position of the source person with those of the driving person based on their layouts. Furthermore, we propose a Texture Alignment Module to keep each part of the person aligned according to the similarity of the texture. Finally, through extensive quantitative and qualitative experiments, our REMOT achieves state-of-the-art results on two public benchmarks.
Comments:10 pages, 5 figures. Accepted by ACMMM2022
Subjects:Computer Vision and Pattern Recognition (cs.CV)
Cite as:arXiv:2209.00475 [cs.CV]
 (orarXiv:2209.00475v1 [cs.CV] for this version)
 https://doi.org/10.48550/arXiv.2209.00475
arXiv-issued DOI via DataCite

Submission history

From: Quanwei Yang [view email]
[v1] Thu, 1 Sep 2022 14:03:51 UTC (1,595 KB)
Full-text links:

Access Paper:

  • View PDF
  • TeX Source
  • Other Formats
Current browse context:
cs.CV
Change to browse by:
export BibTeX citation

Bookmark

BibSonomy logoReddit logo

Bibliographic and Citation Tools

Bibliographic Explorer(What is the Explorer?)
Connected Papers(What is Connected Papers?)
scite Smart Citations(What are Smart Citations?)

Code, Data and Media Associated with this Article

CatalyzeX Code Finder for Papers(What is CatalyzeX?)
Hugging Face(What is Huggingface?)
Papers with Code(What is Papers with Code?)

Demos

Hugging Face Spaces(What is Spaces?)

Recommenders and Search Tools

Influence Flower(What are Influence Flowers?)
CORE Recommender(What is CORE?)

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community?Learn more about arXivLabs.

Which authors of this paper are endorsers? |Disable MathJax (What is MathJax?)

[8]ページ先頭

©2009-2025 Movatter.jp