Computer Science > Computer Vision and Pattern Recognition
arXiv:2207.08224 (cs)
[Submitted on 17 Jul 2022]
Title:Learning with Recoverable Forgetting
View a PDF of the paper titled Learning with Recoverable Forgetting, by Jingwen Ye and 7 other authors
View PDFAbstract:Life-long learning aims at learning a sequence of tasks without forgetting the previously acquired knowledge. However, the involved training data may not be life-long legitimate due to privacy or copyright reasons. In practical scenarios, for instance, the model owner may wish to enable or disable the knowledge of specific tasks or specific samples from time to time. Such flexible control over knowledge transfer, unfortunately, has been largely overlooked in previous incremental or decremental learning methods, even at a problem-setup level. In this paper, we explore a novel learning scheme, termed as Learning wIth Recoverable Forgetting (LIRF), that explicitly handles the task- or sample-specific knowledge removal and recovery. Specifically, LIRF brings in two innovative schemes, namely knowledge deposit and withdrawal, which allow for isolating user-designated knowledge from a pre-trained network and injecting it back when necessary. During the knowledge deposit process, the specified knowledge is extracted from the target network and stored in a deposit module, while the insensitive or general knowledge of the target network is preserved and further augmented. During knowledge withdrawal, the taken-off knowledge is added back to the target network. The deposit and withdraw processes only demand for a few epochs of finetuning on the removal data, ensuring both data and time efficiency. We conduct experiments on several datasets, and demonstrate that the proposed LIRF strategy yields encouraging results with gratifying generalization capability.
Comments: | Accepted by ECCV 2022 |
Subjects: | Computer Vision and Pattern Recognition (cs.CV) |
Cite as: | arXiv:2207.08224 [cs.CV] |
(orarXiv:2207.08224v1 [cs.CV] for this version) | |
https://doi.org/10.48550/arXiv.2207.08224 arXiv-issued DOI via DataCite |
Full-text links:
Access Paper:
- View PDF
- TeX Source
- Other Formats
View a PDF of the paper titled Learning with Recoverable Forgetting, by Jingwen Ye and 7 other authors
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer(What is the Explorer?)
Connected Papers(What is Connected Papers?)
Litmaps(What is Litmaps?)
scite Smart Citations(What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv(What is alphaXiv?)
CatalyzeX Code Finder for Papers(What is CatalyzeX?)
DagsHub(What is DagsHub?)
Gotit.pub(What is GotitPub?)
Hugging Face(What is Huggingface?)
Papers with Code(What is Papers with Code?)
ScienceCast(What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower(What are Influence Flowers?)
CORE Recommender(What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community?Learn more about arXivLabs.