Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
Cornell University

Monday, May 5: arXiv will be READ ONLY at 9:00AM EST for approximately 30 minutes. We apologize for any inconvenience.

We gratefully acknowledge support from the Simons Foundation,member institutions, and all contributors.Donate
arxiv logo>cs> arXiv:2207.03317
arXiv logo
Cornell University Logo

Computer Science > Artificial Intelligence

arXiv:2207.03317 (cs)
[Submitted on 7 Jul 2022]

Title:Multimodal Feature Extraction for Memes Sentiment Classification

View PDF
Abstract:In this study, we propose feature extraction for multimodal meme classification using Deep Learning approaches. A meme is usually a photo or video with text shared by the young generation on social media platforms that expresses a culturally relevant idea. Since they are an efficient way to express emotions and feelings, a good classifier that can classify the sentiment behind the meme is important. To make the learning process more efficient, reduce the likelihood of overfitting, and improve the generalizability of the model, one needs a good approach for joint feature extraction from all modalities. In this work, we proposed to use different multimodal neural network approaches for multimodal feature extraction and use the extracted features to train a classifier to identify the sentiment in a meme.
Subjects:Artificial Intelligence (cs.AI)
Cite as:arXiv:2207.03317 [cs.AI]
 (orarXiv:2207.03317v1 [cs.AI] for this version)
 https://doi.org/10.48550/arXiv.2207.03317
arXiv-issued DOI via DataCite

Submission history

From: Tsegaye Misikir Tashu [view email]
[v1] Thu, 7 Jul 2022 14:21:52 UTC (416 KB)
Full-text links:

Access Paper:

  • View PDF
  • TeX Source
  • Other Formats
Current browse context:
cs.AI
Change to browse by:
export BibTeX citation

Bookmark

BibSonomy logoReddit logo

Bibliographic and Citation Tools

Bibliographic Explorer(What is the Explorer?)
Connected Papers(What is Connected Papers?)
scite Smart Citations(What are Smart Citations?)

Code, Data and Media Associated with this Article

CatalyzeX Code Finder for Papers(What is CatalyzeX?)
Hugging Face(What is Huggingface?)
Papers with Code(What is Papers with Code?)

Demos

Hugging Face Spaces(What is Spaces?)

Recommenders and Search Tools

Influence Flower(What are Influence Flowers?)
CORE Recommender(What is CORE?)

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community?Learn more about arXivLabs.

Which authors of this paper are endorsers? |Disable MathJax (What is MathJax?)

[8]ページ先頭

©2009-2025 Movatter.jp