Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
Cornell University
We gratefully acknowledge support from the Simons Foundation,member institutions, and all contributors.Donate
arxiv logo>cs> arXiv:2206.10049
arXiv logo
Cornell University Logo

Computer Science > Information Theory

arXiv:2206.10049 (cs)
[Submitted on 20 Jun 2022 (v1), last revised 5 May 2024 (this version, v3)]

Title:The Capacity of 3 User Linear Computation Broadcast

View PDFHTML (experimental)
Abstract:The $K$ User Linear Computation Broadcast (LCBC) problem is comprised of $d$ dimensional data (from $\mathbb{F}_q$), that is fully available to a central server, and $K$ users, who require various linear computations of the data, and have prior knowledge of various linear functions of the data as side-information. The optimal broadcast cost is the minimum number of $q$-ary symbols to be broadcast by the server per computation instance, for every user to retrieve its desired computation. The reciprocal of the optimal broadcast cost is called the capacity. The main contribution of this paper is the exact capacity characterization for the $K=3$ user LCBC for all cases, i.e., for arbitrary finite fields $\mathbb{F}_q$, arbitrary data dimension $d$, and arbitrary linear side-informations and demands at each user. A remarkable aspect of the converse is that unlike the $2$ user LCBC whose capacity was determined previously, the entropic formulation (where the entropies of demands and side-informations are specified, but not their functional forms) is insufficient to obtain a tight converse for the $3$ user LCBC. Instead, the converse exploits functional submodularity. Notable aspects of achievability include a decomposition of the users' collective signal space into subspaces that allow different degrees of efficiency in broadcast cost, revealing a tradeoff that leads to a constrained water-filling solution. Random coding arguments are invoked to resolve compatibility issues that arise as each user has a different view of these subspaces, conditioned on its own side-information.
Subjects:Information Theory (cs.IT)
Cite as:arXiv:2206.10049 [cs.IT]
 (orarXiv:2206.10049v3 [cs.IT] for this version)
 https://doi.org/10.48550/arXiv.2206.10049
arXiv-issued DOI via DataCite

Submission history

From: Yuhang Yao [view email]
[v1] Mon, 20 Jun 2022 23:56:18 UTC (37 KB)
[v2] Tue, 28 Jun 2022 05:46:20 UTC (37 KB)
[v3] Sun, 5 May 2024 18:05:52 UTC (50 KB)
Full-text links:

Access Paper:

Current browse context:
cs.IT
Change to browse by:
export BibTeX citation

Bookmark

BibSonomy logoReddit logo

Bibliographic and Citation Tools

Bibliographic Explorer(What is the Explorer?)
Connected Papers(What is Connected Papers?)
scite Smart Citations(What are Smart Citations?)

Code, Data and Media Associated with this Article

CatalyzeX Code Finder for Papers(What is CatalyzeX?)
Hugging Face(What is Huggingface?)
Papers with Code(What is Papers with Code?)

Demos

Hugging Face Spaces(What is Spaces?)

Recommenders and Search Tools

Influence Flower(What are Influence Flowers?)
CORE Recommender(What is CORE?)

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community?Learn more about arXivLabs.

Which authors of this paper are endorsers? |Disable MathJax (What is MathJax?)

[8]ページ先頭

©2009-2025 Movatter.jp