Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
Cornell University
We gratefully acknowledge support from the Simons Foundation,member institutions, and all contributors.Donate
arxiv logo>cs> arXiv:2205.08893
arXiv logo
Cornell University Logo

Computer Science > Information Theory

arXiv:2205.08893 (cs)
[Submitted on 18 May 2022]

Title:Achieving Multi-beam Gain in Intelligent Reflecting Surface Assisted Wireless Energy Transfer

View PDF
Abstract:Intelligent reflecting surface (IRS) is a promising technology to boost the efficiency of wireless energy transfer (WET) systems. However, for a multiuser WET system, simultaneous multi-beam energy transmission is generally required to achieve the maximum performance, which may not be implemented by using the IRS having only a single set of coefficients. As a result, it remains unknowns how to exploit the IRS to approach such a performance upper bound. To answer this question, we aim to maximize the total harvested energy of a multiuser WET system subject to the user fairness constraints and the non-linear energy harvesting model. We first consider the static IRS beamforming scheme, which shows that the optimal IRS reflection matrix obtained by applying semidefinite relaxation is indeed of high rank in general as the number of energy receivers (ERs) increases, due to which the resulting rank-one solution by applying Gaussian Randomization may lead to significant loss. To achieve the multi-beam gain, we then propose a general time-division based novel framework by exploiting the IRS's dynamic passive beamforming. Moreover, it is able to achieve a good balance between the system performance and complexity by controlling the number of IRS shift patterns. Finally, we also propose a time-division multiple access (TDMA) based passive beamforming design for performance comparison. Simulation results demonstrate the necessity of multi-beam transmission and the superiority of the proposed dynamic IRS beamforming scheme over existing schemes.
Subjects:Information Theory (cs.IT); Signal Processing (eess.SP)
Cite as:arXiv:2205.08893 [cs.IT]
 (orarXiv:2205.08893v1 [cs.IT] for this version)
 https://doi.org/10.48550/arXiv.2205.08893
arXiv-issued DOI via DataCite

Submission history

From: Chi Qiu [view email]
[v1] Wed, 18 May 2022 12:26:57 UTC (4,603 KB)
Full-text links:

Access Paper:

  • View PDF
  • TeX Source
  • Other Formats
Current browse context:
cs.IT
Change to browse by:
export BibTeX citation

Bookmark

BibSonomy logoReddit logo

Bibliographic and Citation Tools

Bibliographic Explorer(What is the Explorer?)
Connected Papers(What is Connected Papers?)
scite Smart Citations(What are Smart Citations?)

Code, Data and Media Associated with this Article

CatalyzeX Code Finder for Papers(What is CatalyzeX?)
Hugging Face(What is Huggingface?)
Papers with Code(What is Papers with Code?)

Demos

Hugging Face Spaces(What is Spaces?)

Recommenders and Search Tools

Influence Flower(What are Influence Flowers?)
CORE Recommender(What is CORE?)

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community?Learn more about arXivLabs.

Which authors of this paper are endorsers? |Disable MathJax (What is MathJax?)

[8]ページ先頭

©2009-2025 Movatter.jp