Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
Cornell University

Monday, May 5: arXiv will be READ ONLY at 9:00AM EST for approximately 30 minutes. We apologize for any inconvenience.

We gratefully acknowledge support from the Simons Foundation,member institutions, and all contributors.Donate
arxiv logo>cs> arXiv:2204.10378
arXiv logo
Cornell University Logo

Computer Science > Hardware Architecture

arXiv:2204.10378 (cs)
[Submitted on 21 Apr 2022]

Title:A Case for Transparent Reliability in DRAM Systems

View PDF
Abstract:Today's systems have diverse needs that are difficult to address using one-size-fits-all commodity DRAM. Unfortunately, although system designers can theoretically adapt commodity DRAM chips to meet their particular design goals (e.g., by reducing access timings to improve performance, implementing system-level RowHammer mitigations), we observe that designers today lack sufficient insight into commodity DRAM chips' reliability characteristics to implement these techniques in practice. In this work, we make a case for DRAM manufacturers to provide increased transparency into key aspects of DRAM reliability (e.g., basic chip design properties, testing strategies). Doing so enables system designers to make informed decisions to better adapt commodity DRAM to meet modern systems' needs while preserving its cost advantages.
To support our argument, we study four ways that system designers can adapt commodity DRAM chips to system-specific design goals: (1) improving DRAM reliability; (2) reducing DRAM refresh overheads; (3) reducing DRAM access latency; and (4) mitigating RowHammer attacks. We observe that adopting solutions for any of the four goals requires system designers to make assumptions about a DRAM chip's reliability characteristics. These assumptions discourage system designers from using such solutions in practice due to the difficulty of both making and relying upon the assumption.
We identify DRAM standards as the root of the problem: current standards rigidly enforce a fixed operating point with no specifications for how a system designer might explore alternative operating points. To overcome this problem, we introduce a two-step approach that reevaluates DRAM standards with a focus on transparency of DRAM reliability so that system designers are encouraged to make the most of commodity DRAM technology for both current and future DRAM chips.
Subjects:Hardware Architecture (cs.AR)
Cite as:arXiv:2204.10378 [cs.AR]
 (orarXiv:2204.10378v1 [cs.AR] for this version)
 https://doi.org/10.48550/arXiv.2204.10378
arXiv-issued DOI via DataCite

Submission history

From: Minesh Patel [view email]
[v1] Thu, 21 Apr 2022 19:18:22 UTC (350 KB)
Full-text links:

Access Paper:

Current browse context:
cs.AR
Change to browse by:
export BibTeX citation

Bookmark

BibSonomy logoReddit logo

Bibliographic and Citation Tools

Bibliographic Explorer(What is the Explorer?)
Connected Papers(What is Connected Papers?)
scite Smart Citations(What are Smart Citations?)

Code, Data and Media Associated with this Article

CatalyzeX Code Finder for Papers(What is CatalyzeX?)
Hugging Face(What is Huggingface?)
Papers with Code(What is Papers with Code?)

Demos

Hugging Face Spaces(What is Spaces?)

Recommenders and Search Tools

Influence Flower(What are Influence Flowers?)
CORE Recommender(What is CORE?)

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community?Learn more about arXivLabs.

Which authors of this paper are endorsers? |Disable MathJax (What is MathJax?)

[8]ページ先頭

©2009-2025 Movatter.jp