Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
Cornell University
We gratefully acknowledge support from the Simons Foundation,member institutions, and all contributors.Donate
arxiv logo>cs> arXiv:2204.00216
arXiv logo
Cornell University Logo

Computer Science > Information Retrieval

arXiv:2204.00216 (cs)
[Submitted on 1 Apr 2022 (v1), last revised 13 Dec 2022 (this version, v2)]

Title:Sequential Recommendation with Causal Behavior Discovery

View PDF
Abstract:The key of sequential recommendation lies in the accurate item correlation modeling. Previous models infer such information based on item co-occurrences, which may fail to capture the real causal relations, and impact the recommendation performance and explainability. In this paper, we equip sequential recommendation with a novel causal discovery module to capture causalities among user behaviors. Our general idea is firstly assuming a causal graph underlying item correlations, and then we learn the causal graph jointly with the sequential recommender model by fitting the real user behavior data. More specifically, in order to satisfy the causality requirement, the causal graph is regularized by a differentiable directed acyclic constraint. Considering that the number of items in recommender systems can be very large, we represent different items with a unified set of latent clusters, and the causal graph is defined on the cluster level, which enhances the model scalability and robustness. In addition, we provide theoretical analysis on the identifiability of the learned causal graph. To the best of our knowledge, this paper makes a first step towards combining sequential recommendation with causal discovery. For evaluating the recommendation performance, we implement our framework with different neural sequential architectures, and compare them with many state-of-the-art methods based on real-world datasets. Empirical studies manifest that our model can on average improve the performance by about 7% and 11% on f1 and NDCG, respectively. To evaluate the model explainability, we build a new dataset with human labeled explanations for both quantitative and qualitative analysis.
Comments:Accepted by ICDE 2023
Subjects:Information Retrieval (cs.IR)
Cite as:arXiv:2204.00216 [cs.IR]
 (orarXiv:2204.00216v2 [cs.IR] for this version)
 https://doi.org/10.48550/arXiv.2204.00216
arXiv-issued DOI via DataCite

Submission history

From: Xu Chen [view email]
[v1] Fri, 1 Apr 2022 05:38:53 UTC (9,390 KB)
[v2] Tue, 13 Dec 2022 02:34:56 UTC (12,409 KB)
Full-text links:

Access Paper:

  • View PDF
  • TeX Source
  • Other Formats
Current browse context:
cs.IR
Change to browse by:
export BibTeX citation

Bookmark

BibSonomy logoReddit logo

Bibliographic and Citation Tools

Bibliographic Explorer(What is the Explorer?)
Connected Papers(What is Connected Papers?)
scite Smart Citations(What are Smart Citations?)

Code, Data and Media Associated with this Article

CatalyzeX Code Finder for Papers(What is CatalyzeX?)
Hugging Face(What is Huggingface?)
Papers with Code(What is Papers with Code?)

Demos

Hugging Face Spaces(What is Spaces?)

Recommenders and Search Tools

Influence Flower(What are Influence Flowers?)
CORE Recommender(What is CORE?)

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community?Learn more about arXivLabs.

Which authors of this paper are endorsers? |Disable MathJax (What is MathJax?)

[8]ページ先頭

©2009-2025 Movatter.jp