Movatterモバイル変換


[0]ホーム

URL:


close this message
arXiv smileybones

arXiv Is Hiring Software Developers

Work on one of the world's most important websites and make an impact on open science.

View Jobs
Skip to main content
Cornell University

arXiv Is Hiring Software Devs

View Jobs
We gratefully acknowledge support from the Simons Foundation,member institutions, and all contributors.Donate
arxiv logo>cs> arXiv:2206.05314
arXiv logo
Cornell University Logo

Computer Science > Machine Learning

arXiv:2206.05314 (cs)
[Submitted on 10 Jun 2022 (v1), last revised 17 Dec 2022 (this version, v2)]

Title:Large-Scale Retrieval for Reinforcement Learning

View PDF
Abstract:Effective decision making involves flexibly relating past experiences and relevant contextual information to a novel situation. In deep reinforcement learning (RL), the dominant paradigm is for an agent to amortise information that helps decision making into its network weights via gradient descent on training losses. Here, we pursue an alternative approach in which agents can utilise large-scale context sensitive database lookups to support their parametric computations. This allows agents to directly learn in an end-to-end manner to utilise relevant information to inform their outputs. In addition, new information can be attended to by the agent, without retraining, by simply augmenting the retrieval dataset. We study this approach for offline RL in 9x9 Go, a challenging game for which the vast combinatorial state space privileges generalisation over direct matching to past experiences. We leverage fast, approximate nearest neighbor techniques in order to retrieve relevant data from a set of tens of millions of expert demonstration states. Attending to this information provides a significant boost to prediction accuracy and game-play performance over simply using these demonstrations as training trajectories, providing a compelling demonstration of the value of large-scale retrieval in offline RL agents.
Comments:Thirty-sixth Annual Conference on Neural Information Processing Systems (NeurIPS 2022), 16 pages
Subjects:Machine Learning (cs.LG); Artificial Intelligence (cs.AI)
Cite as:arXiv:2206.05314 [cs.LG]
 (orarXiv:2206.05314v2 [cs.LG] for this version)
 https://doi.org/10.48550/arXiv.2206.05314
arXiv-issued DOI via DataCite

Submission history

From: Arthur Guez [view email]
[v1] Fri, 10 Jun 2022 18:25:30 UTC (8,932 KB)
[v2] Sat, 17 Dec 2022 01:36:01 UTC (8,933 KB)
Full-text links:

Access Paper:

Current browse context:
cs.LG
Change to browse by:
export BibTeX citation

Bookmark

BibSonomy logoReddit logo

Bibliographic and Citation Tools

Bibliographic Explorer(What is the Explorer?)
Connected Papers(What is Connected Papers?)
scite Smart Citations(What are Smart Citations?)

Code, Data and Media Associated with this Article

CatalyzeX Code Finder for Papers(What is CatalyzeX?)
Hugging Face(What is Huggingface?)
Papers with Code(What is Papers with Code?)

Demos

Hugging Face Spaces(What is Spaces?)

Recommenders and Search Tools

Influence Flower(What are Influence Flowers?)
CORE Recommender(What is CORE?)
IArxiv Recommender(What is IArxiv?)

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community?Learn more about arXivLabs.

Which authors of this paper are endorsers? |Disable MathJax (What is MathJax?)

[8]ページ先頭

©2009-2025 Movatter.jp