\`x^2+y_1+z_12^34\` |
Department of Mathematics, Faculty of Science, Silpakorn University, Nakhon Pathom 73000
Division of Mathematical Sciences, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
Department of Mathematics and Statistics, Faculty of Science, Thaksin University, Phatthalung Campus, Phatthalung 93110
Citation:![]() |
[1] | T. Abualrub and R. Oehmke, On the generators of $\mathbb Z_4$ cyclic codes of length $2^e$,IEEE Trans. Inf. Theory,49 (2003), 2126-2133.doi: 10.1109/TIT.2003.815763. |
[2] | A. T. Benjamin and J. J. Quinn,Proofs that Really Count: The Art of Combinatorial Proof, Math. Assoc. Amer., Washington, DC, 2003. |
[3] | T. Blackford, Cyclic codes over $\mathbb Z_4$ of oddly even length,Discrete Appl. Math.,128 (2003), 27-46.doi: 10.1016/S0166-218X(02)00434-1. |
[4] | S. T. Dougherty and S. Ling, Cyclic codes over $\mathbb Z_4$ of even length,Des. Codes Cryptogr.,39 (2006), 127-153.doi: 10.1007/s10623-005-2773-x. |
[5] | S. T. Dougherty and Y. H. Park, On modular cyclic codes,Finite Fields Appl., 13 (2007), 31-57.doi: 10.1016/j.ffa.2005.06.004. |
[6] | A. R. Hammons Jr., P. V. Kumar, A. R. Calderbank, N. J. A. Sloane and P. Solé, The $\mathbb Z_4$ linearity of Kerdock, Preparata, Goethals and related codes,IEEE Trans. Inf. Theory,40 (1994), 301-319.doi: 10.1109/18.312154. |
[7] | Y. Jia, S. Ling and C. Xing, On self-dual cyclic codes over finite fields,IEEE Trans. Inf. Theory, 57 (2011), 2243-2251.doi: 10.1109/TIT.2010.2092415. |
[8] | S, Jitman, S. Ling, H. Liu and X. Xie, Abelian codes in principal ideal group algebras,IEEE Trans. Inf. Theory,59 (2013), 3046-3058.doi: 10.1109/TIT.2012.2236383. |
[9] | H. M. Kiah, K. H. Leung and S. Ling, Cyclic codes over $GR(p^2,m)$ of length $p^k$,Finite Fields Appl.,14 (2008), 834-846.doi: 10.1016/j.ffa.2008.02.003. |
[10] | H. M. Kiah, K. H. Leung and S. Ling, A note on cyclic codes over $GR(p^2,m)$ of length $p^k$,Des. Codes Crypt.,63 (2012), 105-112.doi: 10.1007/s10623-011-9538-5. |
[11] | G. Nebe, E. M. Rains and N. J. A. Sloane,Self-Dual Codes and Invariant Theory, Springer-Verlag, Berlin, 2006. |
[12] | R. Sobhani and M. Esmaeili, A note on cyclic codes over $GR(p^2,m)$ of length $p^k$,Finite Fields Appl.,15 (2009), 387-391.doi: 10.1016/j.ffa.2009.01.004. |
[13] | R. Sobhani and M. Esmaeili, Cyclic and negacyclic codes over the Galois ring $GR(p^2,m)$,Discrete Appl. Math.,157 (2009), 2892-2903.doi: 10.1016/j.dam.2009.03.001. |
[14] | Z. X. Wan,Lectures on Finite Fields and Galois Rings, World Scientific, New Jersey, 2003.doi: 10.1142/5350. |
HTML views()PDF downloads(225)Cited by(0)