Movatterモバイル変換


[0]ホーム

URL:


\`x^2+y_1+z_12^34\`
AIMS
  • share this content in Facebook
  • share this content in Twitter
  • share this content in Linkedin
  • share this content in ResearchGate
 
Advanced Search

Advances in Mathematics of Communications

Advanced Search
This issuePrevious ArticleNext Article
Article Contents
Article Contents
This issuePrevious ArticleOn the ideal associated to a linear codeNext ArticleConstructing strongly-MDS convolutional codes with maximum distance profile

On self-dual cyclic codes of length $p^a$ over $GR(p^2,s)$

  • 1.

    Department of Mathematics, Faculty of Science, Silpakorn University, Nakhon Pathom 73000

  • 2.

    Division of Mathematical Sciences, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371

  • 3.

    Department of Mathematics and Statistics, Faculty of Science, Thaksin University, Phatthalung Campus, Phatthalung 93110

    Received: January 2014
    Published: May 2016
    • Abstract

      In this paper, cyclic codes over the Galois ring ${\rm GR}({p^2},s)$ are studied. The main result is the characterization and enumeration of Hermitian self-dual cyclic codes of length $p^a$ over ${\rm GR}({p^2},s)$. Combining with some known results and the standard Discrete Fourier Transform decomposition, we arrive at the characterization and enumeration of Euclidean self-dual cyclic codes of any length over ${\rm GR}({p^2},s)$.
      Mathematics Subject Classification:Primary: 94B15, 94B60; Secondary: 13B25.

      Citation:
      shu

      \begin{equation} \\ \end{equation}
    • References

      [1]

      T. Abualrub and R. Oehmke, On the generators of $\mathbb Z_4$ cyclic codes of length $2^e$,IEEE Trans. Inf. Theory,49 (2003), 2126-2133.doi: 10.1109/TIT.2003.815763.

      [2]

      A. T. Benjamin and J. J. Quinn,Proofs that Really Count: The Art of Combinatorial Proof, Math. Assoc. Amer., Washington, DC, 2003.

      [3]

      T. Blackford, Cyclic codes over $\mathbb Z_4$ of oddly even length,Discrete Appl. Math.,128 (2003), 27-46.doi: 10.1016/S0166-218X(02)00434-1.

      [4]

      S. T. Dougherty and S. Ling, Cyclic codes over $\mathbb Z_4$ of even length,Des. Codes Cryptogr.,39 (2006), 127-153.doi: 10.1007/s10623-005-2773-x.

      [5]

      S. T. Dougherty and Y. H. Park, On modular cyclic codes,Finite Fields Appl., 13 (2007), 31-57.doi: 10.1016/j.ffa.2005.06.004.

      [6]

      A. R. Hammons Jr., P. V. Kumar, A. R. Calderbank, N. J. A. Sloane and P. Solé, The $\mathbb Z_4$ linearity of Kerdock, Preparata, Goethals and related codes,IEEE Trans. Inf. Theory,40 (1994), 301-319.doi: 10.1109/18.312154.

      [7]

      Y. Jia, S. Ling and C. Xing, On self-dual cyclic codes over finite fields,IEEE Trans. Inf. Theory, 57 (2011), 2243-2251.doi: 10.1109/TIT.2010.2092415.

      [8]

      S, Jitman, S. Ling, H. Liu and X. Xie, Abelian codes in principal ideal group algebras,IEEE Trans. Inf. Theory,59 (2013), 3046-3058.doi: 10.1109/TIT.2012.2236383.

      [9]

      H. M. Kiah, K. H. Leung and S. Ling, Cyclic codes over $GR(p^2,m)$ of length $p^k$,Finite Fields Appl.,14 (2008), 834-846.doi: 10.1016/j.ffa.2008.02.003.

      [10]

      H. M. Kiah, K. H. Leung and S. Ling, A note on cyclic codes over $GR(p^2,m)$ of length $p^k$,Des. Codes Crypt.,63 (2012), 105-112.doi: 10.1007/s10623-011-9538-5.

      [11]

      G. Nebe, E. M. Rains and N. J. A. Sloane,Self-Dual Codes and Invariant Theory, Springer-Verlag, Berlin, 2006.

      [12]

      R. Sobhani and M. Esmaeili, A note on cyclic codes over $GR(p^2,m)$ of length $p^k$,Finite Fields Appl.,15 (2009), 387-391.doi: 10.1016/j.ffa.2009.01.004.

      [13]

      R. Sobhani and M. Esmaeili, Cyclic and negacyclic codes over the Galois ring $GR(p^2,m)$,Discrete Appl. Math.,157 (2009), 2892-2903.doi: 10.1016/j.dam.2009.03.001.

      [14]

      Z. X. Wan,Lectures on Finite Fields and Galois Rings, World Scientific, New Jersey, 2003.doi: 10.1142/5350.

    • Access History

      加载中

    Article Metrics

    HTML views()PDF downloads(225)Cited by(0)

    Other Articles By Authors

    Catalog

      Export File

      Citation

      shu

      Format

      Content

      /

      DownLoad: Full-Size Img PowerPoint
        Return
        Return
          Site map Copyright © 2025 American Institute of Mathematical Sciences

          [8]ページ先頭

          ©2009-2025 Movatter.jp