Movatterモバイル変換


[0]ホーム

URL:


\`x^2+y_1+z_12^34\`
AIMS
  • share this content in Facebook
  • share this content in Twitter
  • share this content in Linkedin
  • share this content in ResearchGate
 
Advanced Search

Communications on Pure and Applied Analysis

Advanced Search
This issuePrevious ArticleNext Article
Article Contents
Article Contents
This issuePrevious ArticleExistence and non-monotonicity of traveling wave solutions for general diffusive predator-prey modelsNext ArticleRiemann problems for a class of coupled hyperbolic systems of conservation laws with a source term

Applications of generalized trigonometric functions with two parameters

  • Department of Mathematical Sciences, Shibaura Institute of Technology, 307 Fukasaku, Minuma, Saitama 337-8570, Japan

  • * Corresponding author

    * Corresponding author

Dedicated to Professor Yoshio Yamada on the occasion of his retirement

Received: November 2017
Revised: May 2018
Published: May 2019

The work of S. Takeuchi was supported by JSPS KAKENHI Grant Number 17K05336.

  • Abstract

    Generalized trigonometric functions (GTFs) are simple generalization of the classical trigonometric functions. GTFs are deeply related to the $p$-Laplacian, which is known as a typical nonlinear differential operator, and there are a lot of works on GTFs concerning the $p$-Laplacian. However, few applications to differential equations unrelated to the $p$-Laplacian are known. We will apply GTFs with two parameters to nonlinear nonlocal boundary value problems without $p$-Laplacian. Moreover, we will give integral formulas for the functions, e.g. Wallis-type formulas, and apply the formulas to the lemniscate function and the lemniscate constant.

    Mathematics Subject Classification:Primary: 33B10, 34B10.

    Citation:
    shu

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1. Graphs of solutions of (4) with $H = 1$ for $m = 0.5, \ 1.0$ and $10.0$.

    Figure 2. Graphs of solutions of (13) for $p = 1.1, \ 2.0$ and $5.0$.

  • References

     M. Abramowitz and I. A. Stegun,Handbook of Mathematical Functions with Formulas,Graphs,and Mathematical Tables, National Bureau of Standards Applied Mathematics Series, 55 For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 1964.
     G. Andrews, R. Askey and R. Roy,Special Functions, Encyclopedia of Mathematics and its Applications, 71. Cambridge University Press, Cambridge, 1999.doi: 10.1017/CBO9781107325937.
     P. Binding,L. Boulton,J. Čepička,P. Drábek and P. Girg , Basis properties of eigenfunctions of the p-Laplacian,Proc. Amer. Math. Soc.,134 (2006), 3487-3494. doi: 10.1090/S0002-9939-06-08001-4.
     F. D. Burgoyne , Generalized trigonometric functions,Math. Comp.,18 (1964), 314-316. doi: 10.2307/2003310.
     P. J. Bushell and D. E. Edmunds , Remarks on generalized trigonometric functions,Rocky Mountain J. Math.,42 (2012), 25-57. doi: 10.1216/RMJ-2012-42-1-25.
     L. Boulton and G. Lord , Approximation properties of theq-sine bases,Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.,467 (2011), 2690-2711. doi: 10.1098/rspa.2010.0486.
     B. A. Bhayo and L. Yin, On generalized $(p, q)$-elliptic integrals, preprint,arXiv: 1507.00031.
     C. Cao,S. Ibrahim,K. Nakanishi and E. S. Titi , Finite-time blowup for the inviscid primitive equations of oceanic and atmospheric dynamics,Comm. Math. Phys.,337 (2015), 473-482. doi: 10.1007/s00220-015-2365-1.
     M. del Pino,M. Elgueta and R. Manásevich , A homotopic deformation along $p$ of a Leray-Schauder degree result and existence for $(\vert u'\vert ^{p-2}u')'+f(t,u) = 0,\;u(0) = u(T) = 0,\;p>1$,J. Differential Equations,80 (1989), 1-13. doi: 10.1016/0022-0396(89)90093-4.
     O. Došlý and P. Řehák,Half-linear Differential Equations, North-Holland Mathematics Studies, 202. Elsevier Science B.V., Amsterdam, 2005.
     P. Drábek and R. Manásevich , On the closed solution to some nonhomogeneous eigenvalue problems withp-Laplacian,Differential Integral Equations,12 (1999), 773-788. 
     D. E. Edmunds,P. Gurka and J. Lang , Properties of generalized trigonometric functions,J. Approx. Theory,164 (2012), 47-56. doi: 10.1016/j.jat.2011.09.004.
     D. E. Edmunds,P. Gurka and J. Lang , Basis properties of generalized trigonometric functions,J. Math. Anal. Appl.,420 (2014), 1680-1692. doi: 10.1016/j.jmaa.2014.06.015.
     A. Elbert, A half-linear second order differential equation,Qualitative theory of differential equations,Vol.I,II (Szeged, 1979), pp. 153-180, Colloq. Math. Soc. Janos Bolyai, 30, NorthHolland, Amsterdam-New York, 1981.
     T. Hyde , A Wallis product on clovers,Amer. Math. Monthly,121 (2014), 237-243. doi: 10.4169/amer.math.monthly.121.03.237.
     T. Kamiya and S. Takeuchi , Complete (p, q)-elliptic integrals with application to a family of means,J. Class. Anal.,10 (2017), 15-25. doi: 10.7153/jca-10-02.
     J. Lang and D. E. Edmunds,Eigenvalues, Embeddings and Generalised Trigonometric Functions, Lecture Notes in Mathematics, 2016. Springer, Heidelberg, 2011.doi: 10.1007/978-3-642-18429-1.
     P. Lindqvist , Some remarkable sine and cosine functions,Ricerche Mat.,44 (1995), 269-290. 
     P. Lindqvist and J. Peetre ,p-arclength of theq-circle,The Mathematics Student,72 (2003), 139-145. 
     P. Lindqvist and J. Peetre,Comments on Erik Lundberg's 1879 thesis. Especially on the work of Göran Dillner and his influence on Lundberg, Memorie dell'Instituto Lombardo (Classe di Scienze Matem. Nat.) 31, 2004.
     Y. Naito , Uniqueness of positive solutions of quasilinear differential equations,Differential Integral Equations,8 (1995), 1813-1822. 
     E. Neuman , Some properties of the generalized Jacobian elliptic functions Ⅲ,Integral Transforms Spec. Funct.,27 (2016), 824-834. doi: 10.1080/10652469.2016.1210144.
     F. W. J. Olver, D. W. Lozier, R. F. Boisvert and C. W. Clark,NIST Handbook of Mathematical Functions, With 1 CD-ROM (Windows, Macintosh and UNIX). U.S. Department of Commerce, National Institute of Standards and Technology, Washington, DC; Cambridge University Press, Cambridge, 2010.
     D. Shelupsky , A generalization of the trigonometric functions,Amer. Math. Monthly,66 (1959), 879-884. doi: 10.2307/2309789.
     S. Takeuchi , Generalized Jacobian elliptic functions and their application to bifurcation problems associated withp-Laplacian,J. Math. Anal. Appl.,385 (2012), 24-35. doi: 10.1016/j.jmaa.2011.06.063.
     S. Takeuchi , The basis property of generalized Jacobian elliptic functions,Commun. Pure Appl. Anal.,13 (2014), 2675-2692. doi: 10.3934/cpaa.2014.13.2675.
     S. Takeuchi , A new form of the generalized complete elliptic integrals,Kodai Math. J.,39 (2016), 202-226. 
     S. Takeuchi , Multiple-angle formulas of generalized trigonometric functions with two parameters,J. Math. Anal. Appl.,444 (2016), 1000-1014. doi: 10.1016/j.jmaa.2016.06.074.
     S. Takeuchi , Legendre-type relations for generalized complete elliptic integrals,J. Class. Anal.,9 (2016), 35-42. doi: 10.7153/jca-09-04.
     S. Takeuchi , Complete $p$-elliptic integrals and a computation formula of $\pi_p$ for $p=4$,The Ramanujan Journal,46 (2018), 309-321. doi: 10.1007/s11139-018-9993-y.
     L. Yin and L.-G. Huang , Inequalities for the generalized trigonometric and hyperbolic functions with two parameters,J. Nonlinear Sci. Appl.,8 (2015), 315-323. doi: 10.22436/jnsa.008.04.04.
  • Access History

    加载中

Figures(2)

Article Metrics

HTML views(3268)PDF downloads(499)Cited by(0)

Other Articles By Authors

Catalog

    Export File

    Citation

    shu

    Format

    Content

    /

    DownLoad: Full-Size Img PowerPoint
    Return
    Return
      Site map Copyright © 2025 American Institute of Mathematical Sciences

      [8]ページ先頭

      ©2009-2025 Movatter.jp