Fixed Point and Homotopy Methods in ConeA-Metric Spaces and Application to the Existence of Solutions to Urysohn Integral Equation
Abstract
:1. Introduction
2.Basic Notions
- (1)
- is reflexive.
- (2)
- is antisymmetric.
- (3)
- is transitive.
- (1)
- is non-empty closed set such that
- (2)
- ∀ such that along with, we have.
- (3)
- .
- (1)
- and if and only if;
- (2)
- ; and
- (3)
- , ∀,
- (d1)
- for distinct points, ∃ such that;
- (d2)
- , if any two elements of the set in P are equal;
- (d3)
- ; and
- (d4)
- , for all,
- (D1)
- and if and only if;
- (D2)
- ; and
- (D3)
- , for all,
- (D’1)
- if and only if;
- (D’2)
- ;
- (D’3)
- ; and
- (D’4)
- ,
- (A1)
- ;
- (A2)
- if and only if; and
- (A3)
- ,
- (d1)
- ;
- (d2)
- if and only if; and
- (d3)
- .
3.Ordered Implicit Relations
- if,then,
- if eitherorthen there exists such that, for all.
- whenever.
- (i)
- (ii)
- .
- (iii)
4. Main Results
4.1. Result for Increasing Self-Mapping
- (1)
- there is such that;
- (2)
- for all, implies; and
- (3)
- for each sequence, with comparable sequential terms, converging to, we have for all.
4.2. Result for Decreasing Self-Mapping
- (1)
- there exists such that;
- (2)
- for all, we find; and
- (3)
- for a sequence with all comparable sequential terms such that, we have ∀.
4.3. Result for Monotone Self-Mapping
- (1)
- there exists such that or;
- (2)
- the mapping g is monotone; and
- (3)
- for a sequence with all comparable sequential terms such that, we have ∀.
5. Examples and Consequences
- (1)
- there exists such that either or;
- (2)
- for all, we have or; and
- (3)
- for a sequence with whose all sequential terms are comparable, we have for all.
- (1)
- there exists verifying either or;
- (2)
- for all, implies either or; and
- (3)
- for a sequence converging to and, we have for all.
6. A Homotopy Result
- (1)
- for each ( represents the boundary of V in P);
- (2)
- there exists such thatwhere and; and
- (3)
- if r is a radius of an open ball V satisfying, then for any.
7. Application to the Existence of the Solution to Urysohn Integral Equation (UIE)
- (C1)
- The kernel fulfils the Carathéodory axiom along with
- (C2)
- Assume a continuous and bounded function over IR.
- (C3)
- There exists a constant such that
- (C4)
- For any, there exists such that or.
- (C4’)
- Take a sequence satisfying such that, which further implies to for all.
- (C5)
- We can find a non-negative and measurable function such thatalso integrable over such that
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ran, A.C.M.; Reurings, M.C.B. A fixed point theorem in partially ordered sets and some applications to matrix equations.Proc. Am. Math. Soc.2004,132, 1435–1443. [Google Scholar] [CrossRef]
- Banach, S. Sur les operations dans les ensembles abstraits et leur application aux equation integrales.Fund. Math.1922,3, 133–181. [Google Scholar] [CrossRef]
- Agarwal, R.P.; El-Gebeily, M.A.; Ó Regan, D. Generalized contractions in partially ordered metric spaces.Appl. Anal.2008,87, 109–116. [Google Scholar] [CrossRef]
- Nieto, J.J.; Rodriyguez-Lopez, R. Existence and uniqueness of fixed point in partially ordered sets and applications to ordinary differential equations.Acta Math. Sinica2007,23, 2205–2212. [Google Scholar] [CrossRef]
- Ó Regan, D.; Petrusel, A. Fixed point theorems for generalized contractions in ordered metric spaces.J. Math. Anal. Appl.2008,341, 1241–1252. [Google Scholar] [CrossRef] [Green Version]
- Popa, V. Fixed point theorems for implicit contractive mappings.Stud. Cerc. St. Ser. Mat. Univ. Bacau.1997,7, 127–134. [Google Scholar]
- Beg, I.; Butt, A.R. Fixed point for set valued mappings satisfying an implicit relation in partially ordered metric spaces.Nonlinear Anal.2009,71, 3699–3704. [Google Scholar] [CrossRef]
- Beg, I.; Butt, A.R. Fixed points for weakly compatible mappings satisfying an implicit relation in partially ordered metric spaces.Carpathian J. Math.2009,25, 1–12. [Google Scholar]
- Berinde, V. Stability of Picard iteration for contractive mappings satisfying an implicit relation.Carpathian J. Math.2011,27, 13–23. [Google Scholar] [CrossRef]
- Berinde, V.; Vetro, F. Common fixed points of mappings satisfying implicit contractive conditions.Fixed Point Theory Appl.2012,2012, 105. [Google Scholar] [CrossRef] [Green Version]
- Sedghi, S.; Altun, I.; Shobe, N. A fixed point theorem for multi-maps satisfying an implicit relation on metric spaces.Appl. Anal. Discrete Math.2008,2, 189–196. [Google Scholar] [CrossRef]
- Altun, I.; Simsek, H. Some fixed point theorems on ordered metric spaces and application.Fixed Point Theory Appl.2010,2010, 17. [Google Scholar] [CrossRef] [Green Version]
- Jachymski, J. The contraction principle for mappings on a metric space with a graph.Proc. Amer. Math. Soc.2008,136, 1359–1373. [Google Scholar] [CrossRef]
- Kim, S.O.; Nazam, M. Existence theorems on the advanced contractions with Applications.J. Funct. Spaces2021,2021, 15. [Google Scholar] [CrossRef]
- Nadler, S.B. Multivalued contraction mappings.Pac. J. Math.1969,30, 475–488. [Google Scholar] [CrossRef]
- Nazam, M.; Park, C.; Arshad, M.; Mahmood, H. On a Fixed Point Theorem with Application to Functional Equations.Open Math.2019,17, 1724–1736. [Google Scholar] [CrossRef]
- Nazam, M. On Jc-contraction and related fixed point problem with applications.Math. Meth. Appl. Sci.2020,43, 10221–10236. [Google Scholar] [CrossRef]
- Huang, L.G.; Zhang, X. Cone metric spaces and fixed point theorems of contractive mappings.J. Math. Anal. Appl.2007,332, 1468–1476. [Google Scholar] [CrossRef] [Green Version]
- Rezapour, S.; Hamlbarani, R. Some notes on the paper Cone metric spaces and fixed point theorems of contractive mappings.J. Math. Anal. Appl.2008,345, 719–724. [Google Scholar] [CrossRef] [Green Version]
- Popa, V. Some fixed point theorems for compatible mappings satisfying an implicit relation.Demonstratio Math.1999,32, 157–163. [Google Scholar] [CrossRef]
- Popa, V. A general coincidence theorem for compatible multivalued mappings satisfying an implicit relation.Demonstratio Math.2000,33, 159–164. [Google Scholar] [CrossRef]
- Ercan, Z. On the end of the cone metric spaces.Topol. Appl.2014,166, 10–14. [Google Scholar] [CrossRef]
- Ceng, L.C.; Wen, C.F.; Liou, Y.C.; Yao, J.C. A General Class of Differential Hemivariational Inequalities Systems in Reflexive Banach Spaces.Mathematics2021,9, 3173. [Google Scholar] [CrossRef]
- He, L.; Cui, Y.L.; Ceng, L.C. Strong convergence for monotone bilevel equilibria with constraints of variational inequalities and fixed points using subgradient extragradient implicit rule.J. Inequal. Appl.2021,2021, 146. [Google Scholar] [CrossRef]
- Ceng, L.C.; Huang, N.J.; Wen, C.F. On generalized global fractional-order composite dynamical systems with set-valued perturbations.J. Nonlinear Var. Anal.2022,6, 149–163. [Google Scholar]
- Ceng, L.C.; Fu, Y.X.; Yin, J.; He, L.; Hu, H.Y. The Solvability of Generalized Systems of Time-Dependent Hemivariational Inequalities Enjoying Symmetric Structure in Reflexive Banach Spaces.Symmetry2021,13, 1801. [Google Scholar] [CrossRef]
- Gähler, S. 2-metrische Räume und ihre topologische Struktur.Math. Nachr.1963,26, 115–148. [Google Scholar] [CrossRef]
- Gähler, S. Uber die uniformisierbakait 2-metrische Räume.Math. Nachr.1965,28, 235–244. [Google Scholar] [CrossRef]
- Gähler, S. Zur geometric 2-metrische Räume.Rev. Roumaine Math. Pures Appl.1966,11, 655–664. [Google Scholar]
- Dhage, B.C. Generalized metric spaces and mappings with fixed point.Bull. Calcutta Math. Soc.1992,84, 329–336. [Google Scholar]
- Mustafa, Z.; Sims, B. A new approach to generalized metric spaces.J. Nonlinear Convex Anal.2006,7, 289–297. [Google Scholar]
- Mustafa, Z.; Sims, B. Fixed point theorems for contractive mappings in completeG-metric spaces.Fixed Point Theory Appl.2009,2009, 10. [Google Scholar] [CrossRef] [Green Version]
- Sedghi, S.; Shobe, N.; Zhou, H. A common fixed point theorem in D-metric spaces.Fixed Point Theory Appl.2007,2007, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Sedghi, S.; Shobe, N.; Aliouche, A. A generalization of fixed point theorems in S-metric spaces.Mat. Vesn.2012,64, 258–266. [Google Scholar]
- Abbas, M.; Ali, B.; Yusuf, I.S. Generalized coupled common fixed point results in partially ordered A-metric spaces.Fixed Point Theory Appl.2015,2015, 64. [Google Scholar] [CrossRef] [Green Version]
- Fernandez, J.; Saelee, S.; Saxena, K.; Malviya, N.; Kumam, P. The A-cone metric space over Banach algebra with applications.Cogent. Math.2017,4, 1282690. [Google Scholar] [CrossRef]
- Altun, I.; Sola, F.; Simsek, H. Generalized contractions on partial metric spaces.Topol. Appl.2010,157, 2778–2785. [Google Scholar] [CrossRef] [Green Version]
- Altun, I.; Turkoglu, D. Some fixed point theorems for weakly compatible mappings satisfying an implicit relation.Taiwan. J. Math.2009,13, 1291–1304. [Google Scholar] [CrossRef]
- Nazam, M.; Arif, A.; Park, C.; Mahmood, H. Some results in cone metric spaces with applications in homotopy theory.Open Math.2020,18, 295–306. [Google Scholar] [CrossRef]
- Joshi, M. Existence theorems for Urysohn’s integral equation.Proc. Am. Math. Soc.1975,49, 387–392. [Google Scholar]
- Maleknejad, K.; Derili, H.; Sohrabi, S. Numerical solution of Urysohn integral equations using the iterated collocation method.Int. J. Com. Math.2008,85, 143–154. [Google Scholar] [CrossRef]
- Singh, R.; Nelakanti, G.; Kumar, J. Approximate Solution of Urysohn Integral Equations Using the Adomian Decomposition Method.Sci. World J.2014,2014, 6. [Google Scholar] [CrossRef] [PubMed]
- Nazam, M.; Aydi, H.; Hussain, A. Existence theorems for (Φ, Ψ)-orthogonal interpolative contractions and an application to fractional differential equations.Optimization2022,71, 1–31. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arif, A.; Nazam, M.; Al-Sulami, H.H.; Hussain, A.; Mahmood, H. Fixed Point and Homotopy Methods in ConeA-Metric Spaces and Application to the Existence of Solutions to Urysohn Integral Equation.Symmetry2022,14, 1328. https://doi.org/10.3390/sym14071328
Arif A, Nazam M, Al-Sulami HH, Hussain A, Mahmood H. Fixed Point and Homotopy Methods in ConeA-Metric Spaces and Application to the Existence of Solutions to Urysohn Integral Equation.Symmetry. 2022; 14(7):1328. https://doi.org/10.3390/sym14071328
Chicago/Turabian StyleArif, Anam, Muhammad Nazam, Hamed H. Al-Sulami, Aftab Hussain, and Hasan Mahmood. 2022. "Fixed Point and Homotopy Methods in ConeA-Metric Spaces and Application to the Existence of Solutions to Urysohn Integral Equation"Symmetry 14, no. 7: 1328. https://doi.org/10.3390/sym14071328
APA StyleArif, A., Nazam, M., Al-Sulami, H. H., Hussain, A., & Mahmood, H. (2022). Fixed Point and Homotopy Methods in ConeA-Metric Spaces and Application to the Existence of Solutions to Urysohn Integral Equation.Symmetry,14(7), 1328. https://doi.org/10.3390/sym14071328