Topological Structure of Solution Set to a Fractional Differential Inclusion Problem with Delay
Abstract
:1. Introduction and Main Results
2. Preliminaries
3. Proof of Theorem 1
4. Proof of Theorem 2
5. Proof of Theorem 3
6. Proof of Theorem 4
7. Proof of Theorem 5
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aronszajn, N. Le correspondant topologique de l’unicit dans la thorie des quations diffrentielles.Ann. Math.1942,43, 730–738. [Google Scholar] [CrossRef]
- Afanasiev, V.N.; Kolmanovskii, V.B.; Nosov, V.R.Mathematical Theory of Control Systems Design; Springer: Dordrecht, The Netherlands, 1996. [Google Scholar]
- Papageorgiou, N.S.; Yannakakis, N. Optimal control of nonlinear evolution equations.Int. J. Syst. Sci.2001,23, 1245–1259. [Google Scholar] [CrossRef]
- Gabor, G. On the acyclicity of fixed point sets of multivalued maps.Topol. Methods Nonlinear Anal.1999,14, 327–343. [Google Scholar] [CrossRef] [Green Version]
- Gabor, G. Some results on existence and structure of solution sets to differential inclusions on the halfline.Boll. Della Unione Mat. Ital. B2002,2, 431–446. [Google Scholar]
- Andres, J.; Gabor, G.; Grniewicz, L. Acyclicity of solution sets to functional inclusions.Nonlinear Anal.2002,49, 671–688. [Google Scholar] [CrossRef]
- Wojciech, K. Topological structure of solution sets of differential inclusions: The constrained case.Abstr. Appl. Anal.2003,2003, 405941. [Google Scholar]
- Chen, D.H.; Wang, R.N.; Zhou, Y. Nonlinear evolution inclusions: Topological characterizations of solution sets and applications.J. Funct. Anal.2013,265, 2039–2073. [Google Scholar] [CrossRef]
- Cheng, Y.; Agarwal, R.P.; Qin, S. R-structure of solutions set for a vector evolution inclusions defined on right halfline.Fixed Point Theory2018,19, 123–140. [Google Scholar] [CrossRef] [Green Version]
- Grniewicz, L. Topological structure of solution sets: Current results.Arch. Math.2000,36, 343–382. [Google Scholar]
- Andres, J.; PavlaKov, M. Topological structure of solution sets to asymptotic boundary value problems.J. Differ. Equ.2010,248, 127–150. [Google Scholar] [CrossRef] [Green Version]
- Djebali, S.; Gorniewicz, L.; Ouahab, A.Existence and Structure of Solution Sets for Impulsive Differential Inclusions: A Survey; Lecture Notes in Nonlinear Analysis; Nicolai Copernicus University: Torun, Poland, 2012. [Google Scholar]
- Djebali, S.; Grniewicz, L.; Ouahab, A.Solution Sets for Differential Equations and Inclusions; De Gruyter: Berlin, Germany; Boston, MA, USA, 2012. [Google Scholar] [CrossRef]
- Bugajewska, D.; Kasprzak, P. On the existence, uniqueness and topological structure of solution sets to a certain fractional differential equation.Comput. Math. Appl.2010,59, 1108–1116. [Google Scholar] [CrossRef] [Green Version]
- Ziane, M. On the solution set for weighted fractional differential equations in banach spaces.Differ. Equ. Dyn. Syst.2020,28, 419–430. [Google Scholar] [CrossRef]
- Chalco-Cano, Y.; Nieto, J.J.; Ouahab, A.; Romn-Flores, H. Solution set for fractional differential equations with riemann-liouville derivative.Fract. Calc. Appl. Anal.2013,16, 682–694. [Google Scholar] [CrossRef]
- Wang, R.N.; Xiang, Q.M.; Zhou, Y. Fractional delay control problems: Topological structure of solution sets and its applications.Optimization2014,63, 1249–1266. [Google Scholar] [CrossRef]
- Hoa, L.H.; Trong, N.N.; Truong, L.X. Topological structure of solution set for a class of fractional neutral evolution equations on the halfline.Topol. Methods Nonlinear Anal.2016,48, 1–24. [Google Scholar] [CrossRef]
- Singh, A.; Shukla, A.; Vijayakumar, V.; Udhayakumar, R. Asymptotic stability of fractional order (1,2] stochastic delay differential equations in Banach spaces.Chaos Solitons Fract.2021,249, 1–9. [Google Scholar] [CrossRef]
- Douaifia, R.; Abdelmalek, S.; Bendoukha, S. Asymptotic stability conditions for autonomous time-fractional reaction-diffusion systems.Commun. Nonlinear Sci. Numer. Simul.2020,80, 1–16. [Google Scholar] [CrossRef]
- Altun, Y.; Tunc, C. On the asymptotic stability of a nonlinear fractionalorder system with multiple variable delays.Appl. Appl. Math.2020,15, 458–468. [Google Scholar]
- Podlubny, I.Fractional Differential Equations, an Introduction to Fractional Derivatives; Elsevier: Amsterdam, The Netherlands, 1998. [Google Scholar]
- Bagley, R.L.On the Fractional Order Initial Value Problem and Its Engineering Applications; Fractional Calculus and Its Applications; Nishimoto, K., Ed.; Nihon University: Tokyo, Japan, 1990. [Google Scholar]
- Phillips, P.Fractional Matrix Calculus and the Distribution of Multivariate Tests; Cowles Foundation for Research in Economics; Yale University: New Haven, CT, USA, 1985. [Google Scholar]
- Dineshkumar, C.; Udhayakumar, R.; Vijayakumar, V.; Nisar, K.S. Anurag Shukla, A note concerning to approximate controllability of Atangana-Baleanu fractional neutral stochastic systems with infinite delay.Chaos Solitons Fract.2022,157, 111916. [Google Scholar] [CrossRef]
- Haq, A.; Sukavanam, N. Existence and approximate controllability of Riemann-Liouville fractional integrodifferential systems with damping.Chaos Solitons Fract.2020,139, 110043. [Google Scholar] [CrossRef]
- Gorniewicz, L.Topological Fixed Point Theory of Multivalued Mappings; Kluwer: Dordrecht, The Netherlands, 1999. [Google Scholar]
- Wu, H.; Wang, L.; Wang, Y.; Niu, P.; Fang, B. Global mittag-leffler projective synchronization for fractional-order neural networks: An lmi-based approach.Adv. Differ. Equ.2016,132, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Ye, H.; Gao, J.; Ding, Y. A generalized gronwall inequality and its application to a fractional differential equation.J. Math. Anal. Appl.2007,328, 1075–1081. [Google Scholar] [CrossRef] [Green Version]
- Hu, S.C.; Papageorgiou, N.S. On the topological regularity of the solution set of differential inclusions with constraints.J. Differ. Equ.1994,107, 280–289. [Google Scholar] [CrossRef] [Green Version]
- Ricceri, B. Une proprit topologique de l’ensemble des points fixes d’une contraction multivoque valeurs convexes.Atti Accad. Naz. Lincei. Cl. Sci. Fis. Mat. Nat. Rend. Lincei. Mat. Appl.1987,81, 283–286. [Google Scholar]
- Grniewicz, L.; Lassonde, M. Approximation and fixed points for compositions of r-maps.Topol. Its Appl.1994,55, 239–250. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Y.; Cong, F.; Hua, H. Anti-periodic solutions for nonlinear evolution equations.Adv. Differ. Equ.2012,2012, 165. [Google Scholar] [CrossRef] [Green Version]
- Vrabie, I.I.Compactness Methods for Nonlinear Evolutions; Longman Scientific and Technical; CRC Press: Boca Raton, FL, USA, 1995. [Google Scholar]
- Nistri, P.; Dragoni, R.; Macki, J.W.; Zecca, P.Solution Sets of Differential Equations in Abstract Spaces; Pitman Research Notes in Mathematics; Longman: New York, NY, USA, 1996. [Google Scholar]
- Vijayakumar, V.; Nisar, K.S.; Chalishajar, C.; Shukla, A.; Malik, M.; Alsaadi, A.; Aldosary, S.F. A Note on Approximate Controllability of Fractional Semilinear Integrodifferential Control Systems via Resolvent Operators.Fractal Fract.2022,6, 73. [Google Scholar] [CrossRef]
- Shukla, A.; Patel, R. Existence and Optimal Control Results for Second-Order Semilinear System in Hilbert Spaces.Circuits Syst. Signal Process.2021,40, 4246–4258. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, S.; Wu, R.; Ge, B. Topological Structure of Solution Set to a Fractional Differential Inclusion Problem with Delay.Symmetry2022,14, 792. https://doi.org/10.3390/sym14040792
Gao S, Wu R, Ge B. Topological Structure of Solution Set to a Fractional Differential Inclusion Problem with Delay.Symmetry. 2022; 14(4):792. https://doi.org/10.3390/sym14040792
Chicago/Turabian StyleGao, Shanshan, Rui Wu, and Bin Ge. 2022. "Topological Structure of Solution Set to a Fractional Differential Inclusion Problem with Delay"Symmetry 14, no. 4: 792. https://doi.org/10.3390/sym14040792
APA StyleGao, S., Wu, R., & Ge, B. (2022). Topological Structure of Solution Set to a Fractional Differential Inclusion Problem with Delay.Symmetry,14(4), 792. https://doi.org/10.3390/sym14040792