Cubic–Quartic Optical Soliton Perturbation with Differential Group Delay for the Lakshmanan–Porsezian–Daniel Model by Lie Symmetry



Abstract
:1. Introduction
Governıng Model
2. Lie Symmetry Analysis
2.1. Symmetry Reduction and Closed-Form Solutions
2.1.1. The Generalized Kudryashov’s Method
2.1.2. Improved F-Expansion Approach
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ekici, M. Optical solitons in birefringent fibers for Lakshmanan–Porsezian–Daniel model by extended Jacobi’s elliptic function expansion scheme.Optik2018,172, 651–656. [Google Scholar] [CrossRef]
- Kudryashov, N.A. The Lakshmanan–Porsezian–Daniel model with arbitrary refractive index and its solution.Optik2021,241, 167043. [Google Scholar] [CrossRef]
- Serkin, V.N.; Belyaeva, T.L. Optimal control for soliton breathers of the Lakshmanan–Porsezian–Daniel, Hirota, and cmKdV models.Optik2018,175, 17–27. [Google Scholar] [CrossRef]
- Xin, H. Optical envelope patterns in nonlinear media modeled by the Lakshmanan–Porsezian–Daniel equation.Optik2021,227, 165839. [Google Scholar] [CrossRef]
- Kumar, S.; Biswas, A.; Zhou, Q.; Yildirim, Y.; Alshehri, H.M.; Belic, M.R. Straddled optical solitons for cubic–quartic Lakshmanan–Porsezian–Daniel model by Lie symmetry.Phys. Lett. A2021,417, 127706. [Google Scholar] [CrossRef]
- Vega–Guzman, J.; Biswas, A.; Kara, A.H.; Mahmood, M.F.; Ekici, M.; Alshehri, H.M.; Belic, M.R. Cubic–quartic optical soliton perturbation and conservation laws with Lakshmanan–Porsezian–Daniel model: Undetermined coefficients.J. Nonlinear Opt. Phys. Mater.2021,30, 2150007. [Google Scholar] [CrossRef]
- Yildirim, Y.; Topkara, E.; Biswas, A.; Triki, H.; Ekici, M.; Guggilla, P.; Khan, S.; Belic, M.R. Cubic–quartic optical soliton perturbation with Lakshmanan–Porsezian–Daniel model by sine–Gordon equation approach.J. Opt.2021,50, 322–329. [Google Scholar] [CrossRef]
- Bulut, H.; Pandir, Y.; Demiray, S.T. Exact solutions of nonlinear Schrödinger’s equation with dual power–law nonlinearity by extended trial equation method.Waves Random Complex Media2014,24, 439–451. [Google Scholar] [CrossRef] [Green Version]
- Dan, J.; Sain, S.; Ghose-Choudhury, A.; Garai, S. Solitary wave solutions of nonlinear PDEs using Kudryashov’s R function method.J. Mod. Opt.2020,67, 1499–1507. [Google Scholar] [CrossRef]
- Guo, Q.; Liu, J. New exact solutions to the nonlinear Schrödinger equation with variable coefficients.Results Phys.2020,16, 102857. [Google Scholar] [CrossRef]
- Islam, M.S.; Khan, K.; Arnous, A.H. Generalized Kudryashov method for solving some (3+1)–dimensional nonlinear evolution equations.New Trend Math. Sci.2015,3, 46–57. [Google Scholar]
- Kudryashov, N.A. First integrals and general solution of the traveling wave reduction for Schrödinger equation with anti–cubic nonlinearity.Optik2019,185, 665–671. [Google Scholar] [CrossRef]
- Wazwaz, A.M.; El–Tantawy, S.A. Optical Gaussons for nonlinear logarithmic Schrödinger equations via the variational iteration method.Optik2019,180, 414–418. [Google Scholar] [CrossRef]
- Bluman, G.; Stephen, A.Symmetry and Integration Methods for Differential Equations; Springer: New York, NY, USA, 2008. [Google Scholar]
- Olver, P.J.Applications of Lie Groups to Differential Equations; Springer: New York, NY, USA, 2000. [Google Scholar]
- Son, N.K.; Thieu, N.N.; Yen, N.D. On the solution existence for prox-regular perturbed sweeping processes.J. Nonlinear Var. Anal.2021,5, 851–863. [Google Scholar]
- Halik, A. Dynamics in a two species Lotka-Volterra cooperative system with the Crowley-Martin functional response.J. Nonlinear Funct. Anal.2021,2021, 36. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, S.; Biswas, A.; Yıldırım, Y.; Moraru, L.; Moldovanu, S.; Alshehri, H.M.; Maturi, D.A.; Al-Bogami, D.H. Cubic–Quartic Optical Soliton Perturbation with Differential Group Delay for the Lakshmanan–Porsezian–Daniel Model by Lie Symmetry.Symmetry2022,14, 224. https://doi.org/10.3390/sym14020224
Kumar S, Biswas A, Yıldırım Y, Moraru L, Moldovanu S, Alshehri HM, Maturi DA, Al-Bogami DH. Cubic–Quartic Optical Soliton Perturbation with Differential Group Delay for the Lakshmanan–Porsezian–Daniel Model by Lie Symmetry.Symmetry. 2022; 14(2):224. https://doi.org/10.3390/sym14020224
Chicago/Turabian StyleKumar, Sachin, Anjan Biswas, Yakup Yıldırım, Luminita Moraru, Simona Moldovanu, Hashim M. Alshehri, Dalal Adnan Maturi, and Dalal H. Al-Bogami. 2022. "Cubic–Quartic Optical Soliton Perturbation with Differential Group Delay for the Lakshmanan–Porsezian–Daniel Model by Lie Symmetry"Symmetry 14, no. 2: 224. https://doi.org/10.3390/sym14020224
APA StyleKumar, S., Biswas, A., Yıldırım, Y., Moraru, L., Moldovanu, S., Alshehri, H. M., Maturi, D. A., & Al-Bogami, D. H. (2022). Cubic–Quartic Optical Soliton Perturbation with Differential Group Delay for the Lakshmanan–Porsezian–Daniel Model by Lie Symmetry.Symmetry,14(2), 224. https://doi.org/10.3390/sym14020224