Quadratic Stabilization of Linear Uncertain Positive Discrete-Time Systems
Abstract
:1. Introduction
2. Problem Formulation and Starting Preliminaries
- i.
- ii.
3. Main Results
3.1. Parametric Features in Control Design
3.2. Parametric Features in Observer Design
3.3. Conjunction with State Observer-Based Control
4. Illustrative Numerical Example
5. Summary and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
LMI | Linear Matrix Inequality |
LPV | Linear Parameter Varying |
MIMO | Multiple-Input Multiple-Output |
SeDuMi | Self Dual Minimization |
Notations
,,, | state, input and output vectors of variables, state estimation error |
F,G,C | nominal system matrix parameters |
, | nominal matrix parameters of the closed-loop and observer structures |
M,U,,,, | matrices which characterize the structureof the uncertainties |
, | matrices with Lebesgue measurable elements |
,,, | rhombic matrices ofFand their diagonals |
K,J,L | controller gain matrix, observer gain matrix, circulant permutation matrix |
,,, | associated block diagonal matrix structures |
P,Q,, | positive definite diagonal matrix variables of LMIs |
, | left pseudoinverse ofM,, repectively |
,,, | , identity matrices, real positive tuning parameters |
Appendix A
References
- Nikaido, H.Convex Structures and Economic Theory; Academic Press: New York, NY, USA, 1968. [Google Scholar]
- Smith, H.L.Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems; American Mathematical Society: Providence, RI, USA, 1995. [Google Scholar]
- Ait Rami, M.; Tadeo, F. Linear programming approach to impose positiveness in closed-loop and estimated states. In Proceedings of the 16th International Symposium on Mathematical Theory of Networks and Systems, Kyoto, Japan, 24–28 July 2006; pp. 2470–2477. [Google Scholar]
- Carnicer, J.M.; Pena, J.M.; Zalik, R.A. Strictly totally positive systems.J. Approx. Theory1998,92, 411–441. [Google Scholar] [CrossRef] [Green Version]
- Anderson, B.D.O. Positive system realizations. InOpen Problems in Mathematical Systems and Control Theory; Springer: London, UK, 1999; pp. 7–10. [Google Scholar]
- Farina, L.; Rinaldi, S.Positive Linear Systems: Theory and Applications; John Wiley & Sons: New York, NY, USA, 2000. [Google Scholar]
- Blanchini, F.; Colaneri, P.; Vlacher, M.E. Switched positive linear systems.Found. Trends Syst. Control2015,2, 101–273. [Google Scholar] [CrossRef]
- Khong, S.Z.; Rantzer, A. Diagonal Lyapunov functions for positive linear time-varying systems. In Proceedings of the 55th IEEE Conference on Decision and Control CDC 2016, Las Vegas, NV, USA, 12–14 December 2016; pp. 5269–5274. [Google Scholar]
- Shen, J.Analysis and Synthesis of Dynamic Systems with Positive Characteristics; Springer Nature: Singapore, 2017. [Google Scholar]
- Xua, S.; Lam, J.; Yang, C. Quadratic stability and stabilization of uncertain linear discrete-time systems with state delay.Syst. Control Lett.2001,43, 77–84. [Google Scholar] [CrossRef]
- Dastaviz, A.; Binazadeh, T. Simultaneous stabilization of a collection of uncertain discrete-time systems with time-varying state-delay via discrete-time sliding mode control.J. Vib. Control2019,25, 2261–2273. [Google Scholar] [CrossRef]
- Liu, X.; Wang, L.; Yu, W.; Zhong, S. Constrained control of positive discrete-time systems with delays.IEEE Trans. Circuits Syst. II Express Briefs2008,55, 193–197. [Google Scholar]
- Mahmoud, M.S.; Xie, L. Positive real analysis and synthesis of uncertain discrete time systems.IEEE Trans. Circuits Syst. Fundam. Theory Appl.2000,47, 403–406. [Google Scholar] [CrossRef]
- Kau, S.W.; Liu, Y.S.; Hong, L.; Lee, C.H.; Fang, C.H.; Lee, L. A new LMI condition for robust stability of discrete-time uncertain systems.Syst. Control Lett.2005,54, 1195–1203. [Google Scholar] [CrossRef]
- Jiang, X.; Tian, X.; Zhang, T.; Zhang, W. Quadratic stabilizability and H∞ control of linear discrete-time stochastic uncertain systems.Asian J. Control2017,19, 35–46. [Google Scholar] [CrossRef]
- Zhou, S.; Lam, J.; Feng, G. New characterization of positive realness and control of a class of uncertain polytopic discrete-time systems.Syst. Control Lett.2005,54, 417–427. [Google Scholar] [CrossRef]
- Shu, Z.; Lam, J.; Gao, H.; Du, B.; Wu, L. Positive observers and dynamic output-feedback controllers for interval positive linear systems.IEEE Trans. Circuits Syst.2008,55, 3209–3222. [Google Scholar]
- Krokavec, D.; Filasová, A. Stabilization of discrete-time LTI positive systems.Arch. Control Sci.2017,27, 575–594. [Google Scholar] [CrossRef] [Green Version]
- Krokavec, D.; Filasová, A. H∞ norm principle in residual filter design for discrete-time linear positive systems.Eur. J. Control2019,45, 17–29. [Google Scholar] [CrossRef]
- Khargonekar, P.P.; Petersen, I.R. Robust stabilization of uncertain linear systems. Quadratic stabilizability and H∞ control theory.IEEE Trans. Autom. Control1990,35, 356–361. [Google Scholar] [CrossRef]
- Garcia, G.; Bernussou, J. Pole assignment for uncertain systems in a specified disk by state feedback.IEEE Trans. Autom. Control1995,40, 184–190. [Google Scholar] [CrossRef]
- Ait Rami, M.; Tadeo, F. Positive observation problem for linear discrete positive systems. In Proceedings of the 45th IEEE Conference on Decision and Control CDC 2006, San Diego, CA, USA, 13–15 December 2006; pp. 4729–4733. [Google Scholar]
- Horn, R.A.; Johnson, C.R.Matrix Analysis; Cambridge University Press: New York, NY, USA, 1995. [Google Scholar]
- Krokavec, D.; Filasová, A. Control design for linear uncertain positive discrete-time systems. In Proceedings of the 4th IFAC Workshop on Linear Parameter Varying Systems LPVS 2021, Milan, Italy, 19–20 July 2021; pp. 39–44. [Google Scholar]
- Huusom, J.K.; Poulsen, N.K.; Jørgensen, S.B. Iterative feedback tuning of uncertain state space systems.Braz. J. Chem. Eng.2010,27, 461–472. [Google Scholar] [CrossRef]
- Peaucelle, D.; Henrion, D.; Labit, Y.; Taitz, K.User’s Guide for SeDuMi Interface 1.04; LAAS-CNRS: Toulouse, France, 2002. [Google Scholar]
- Krokavec, D.; Filasová, A. A Metzler-Lipschitz structure in unknown-input observer design. In Proceedings of the 29th Mediterranean Conference on Control and Automation MED 2021, Bari, Italy, 22–25 June 2021; pp. 831–836. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krokavec, D.; Filasová, A. Quadratic Stabilization of Linear Uncertain Positive Discrete-Time Systems.Symmetry2021,13, 1725. https://doi.org/10.3390/sym13091725
Krokavec D, Filasová A. Quadratic Stabilization of Linear Uncertain Positive Discrete-Time Systems.Symmetry. 2021; 13(9):1725. https://doi.org/10.3390/sym13091725
Chicago/Turabian StyleKrokavec, Dušan, and Anna Filasová. 2021. "Quadratic Stabilization of Linear Uncertain Positive Discrete-Time Systems"Symmetry 13, no. 9: 1725. https://doi.org/10.3390/sym13091725
APA StyleKrokavec, D., & Filasová, A. (2021). Quadratic Stabilization of Linear Uncertain Positive Discrete-Time Systems.Symmetry,13(9), 1725. https://doi.org/10.3390/sym13091725