Bernoulli Polynomials and Their Some New Congruence Properties
Abstract
:1. Introduction
2. Several Lemmas
3. Proofs of the Theorems
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Apostol, T.M.Introduction to Analytic Number Theory; Springer: New York, NY, USA, 1976. [Google Scholar]
- Knuth, D.E.; Buckholtz, T.J. Computation of Tangent, Euler, and Bernoulli numbers.Math. Comput.1967,21, 663–688. [Google Scholar] [CrossRef]
- Hou, Y.W.; Shen, S.M. The Euler numbers and recursive properties of DirichletL-functions.Adv. Differ. Equ.2018,2018, 397. [Google Scholar] [CrossRef]
- Liu, G.D. Identities and congruences involving higher-order Euler-Bernoulli numbers and polynonials.Fibonacci Q.2001,39, 279–284. [Google Scholar]
- Kim, T. Euler numbers and polynomials associated with zeta functions.Abstr. Appl. Anal.2008,2018, 581582. [Google Scholar] [CrossRef]
- Zhang, W.P. Some identities involving the Euler and the central factorial numbers.Fibonacci Q.1998,36, 154–157. [Google Scholar]
- Zhao, J.H.; Chen, Z.Y. Some symmetric identities involving Fubini polynomials and Euler numbers.Symmetry2018,10, 303. [Google Scholar]
- Kim, D.S.; Kim, T. Some symmetric identities for the higher-orderq-Euler polynomials related to symmetry groupS3 arising fromp-Adicq-fermionic integrals on ℤp.Filomat2016,30, 1717–1721. [Google Scholar] [CrossRef]
- Kim, T. Symmetry of power sum polynomials and multivariate fermionicp-Adic invariant integral onZp.Russ. J. Math. Phys.2009,16, 93–96. [Google Scholar] [CrossRef]
- Kim, T.; Kim, D.S.; Jang, G.W. A note on degenerate Fubini polynomials.Proc. Jiangjeon Math. Soc.2017,20, 521–531. [Google Scholar]
- Kim, D.S.; Park, K.H. Identities of symmetry for Bernoulli polynomials arising from quotients of Volkenborn integrals invariant underS3.Appl. Math. Comput.2013,219, 5096–5104. [Google Scholar] [CrossRef]
- Kim, T.; Kim, D.S. An identity of symmetry for the degernerate Frobenius-Euler polynomials.Math. Slovaca2018,68, 239–243. [Google Scholar] [CrossRef]
- Kim, T.; Kim, S.D.; Jang, G.W.; Kwon, J. Symmetric identities for Fubini polynomials.Symmetry2018,10, 219. [Google Scholar] [CrossRef]
- Kim, D.S.; Rim, S.-H.; Kim, T. Some identities on Bernoulli and Euler polynomials arising from orthogonality of Legendre polynomials.J. Inequal. Appl.2012,2012, 227. [Google Scholar] [CrossRef]
- Simsek, Y. Identities on the Changhee numbers and Apostol-type Daehee polynomials.Adv. Stud. Contemp. Math.2017,27, 199–212. [Google Scholar]
- Guy, R.K.Unsolved Problems in Number Theory, 2nd ed.; Springer: New York, NY, USA, 1994. [Google Scholar]
- Liu, G.D. The solution of problem for Euler numbers.Acta Math. Sin.2004,47, 825–828. [Google Scholar]
- Zhang, W.P.; Xu, Z.F. On a conjecture of the Euler numbers.J. Number Theory2007,127, 283–291. [Google Scholar] [CrossRef]
- Cho, B.; Park, H. Evaluating binomial convolution sums of divisor functions in terms of Euler and Bernoulli polynomials.Int. J. Number Theory2018,14, 509–525. [Google Scholar] [CrossRef]
- Wagstaff, S.S., Jr. Prime divisors of the Bernoulli and Euler Numbers.Number Theory Millenn.2002,3, 357–374. [Google Scholar]
- Bayad, A.; Aygunes, A. Hecke operators and generalized Bernoulli-Euler polynomials.J. Algebra Number Theory Adv. Appl.2010,3, 111–122. [Google Scholar]
- Kim, D.S.; Kim, T. Somep-Adic integrals on ℤp Associated with trigonometric functions.Russ. J. Math. Phys.2018,25, 300–308. [Google Scholar] [CrossRef]
- Powell, B.J. Advanced problem 6325.Am. Math. Mon.1980,87, 836. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duan, R.; Shen, S. Bernoulli Polynomials and Their Some New Congruence Properties.Symmetry2019,11, 365. https://doi.org/10.3390/sym11030365
Duan R, Shen S. Bernoulli Polynomials and Their Some New Congruence Properties.Symmetry. 2019; 11(3):365. https://doi.org/10.3390/sym11030365
Chicago/Turabian StyleDuan, Ran, and Shimeng Shen. 2019. "Bernoulli Polynomials and Their Some New Congruence Properties"Symmetry 11, no. 3: 365. https://doi.org/10.3390/sym11030365
APA StyleDuan, R., & Shen, S. (2019). Bernoulli Polynomials and Their Some New Congruence Properties.Symmetry,11(3), 365. https://doi.org/10.3390/sym11030365