Semi-Supervised Informer for the Compound Fault Diagnosis of Industrial Robots
Abstract
:1. Introduction
2. Literature Review
2.1. Recent Advances in Fault Diagnosis
2.2. The Latest Research on Few-Shot Learning in Fault Diagnosis
3. Methodology
3.1. Informer-Based Fault Diagnosis
3.2. Label Propagation Algorithm
4. Experimental Study
4.1. Dataset
4.2. Experimental Setup
4.3. Experimental Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CNNs | Convolutional Neural Networks |
KL | Kullback–Leibler |
ELU | Exponential Linear Unit |
LSTM | Long Short-Term Memory |
References
- Xiao, Y.; Shao, H.; Wang, J.; Yan, S.; Liu, B. Bayesian Variational Transformer: A generalizable model for rotating machinery fault diagnosis.Mech. Syst. Signal Process.2024,207, 110936. [Google Scholar] [CrossRef]
- Zhang, Y.; Yu, K.; Lei, Z.; Ge, J.; Xu, Y.; Li, Z.; Ren, Z.; Feng, K. Integrated intelligent fault diagnosis approach of offshore wind turbine bearing based on information stream fusion and semi-supervised learning.Expert Syst. Appl.2023,232, 120854. [Google Scholar] [CrossRef]
- Chen, C.; Liu, C.; Wang, T.; Zhang, A.; Wu, W.; Cheng, L. Compound fault diagnosis for industrial robots based on dual-transformer networks.J. Manuf. Syst.2023,66, 163–178. [Google Scholar] [CrossRef]
- He, B.; Cao, X.; Hua, Y. Data fusion-based sustainable digital twin system of intelligent detection robotics.J. Clean. Prod.2021,280, 124181. [Google Scholar] [CrossRef]
- Zio, E. Prognostics and Health Management (PHM): Where are we and where do we (need to) go in theory and practice.Reliab. Eng. Syst. Saf.2022,218, 108–119. [Google Scholar] [CrossRef]
- Zhang, T.; Chen, J.; Li, F.; Zhang, K.; Lv, H.; He, S.; Xu, E. Intelligent fault diagnosis of machines with small & imbalanced data: A state-of-the-art review and possible extensions.ISA Trans.2022,119, 152–171. [Google Scholar]
- Dixit, S.; Verma, N.K.; Ghosh, A. Intelligent Fault Diagnosis of Rotary Machines: Conditional Auxiliary Classifier GAN Coupled With Meta Learning Using Limited Data.IEEE Trans. Instrum. Meas.2021,70, 3517811. [Google Scholar] [CrossRef]
- Hu, Y.; Liu, R.; Li, X.; Chen, D.; Hu, Q. Task-Sequencing Meta Learning for Intelligent Few-Shot Fault Diagnosis With Limited Data.IEEE Trans. Ind. Inform.2022,18, 3894–3904. [Google Scholar] [CrossRef]
- Feng, Y.; Chen, J.; Xie, J.; Zhang, T.; Lv, H.; Pan, T. Meta-learning as a promising approach for few-shot cross-domain fault diagnosis: Algorithms, applications, and prospects.Knowl.-Based Syst.2022,235, 107646. [Google Scholar] [CrossRef]
- Xing, S.; Lei, Y.; Yang, B.; Lu, N. Adaptive Knowledge Transfer by Continual Weighted Updating of Filter Kernels for Few-Shot Fault Diagnosis of Machines.IEEE Trans. Ind. Electron.2022,69, 1968–1976. [Google Scholar] [CrossRef]
- Zhan, W.; Zhang, M.-L. Inductive Semi-supervised Multi-Label Learning with Co-Training. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Halifax, NS, Canada, 13–17 August 2017; ACM: New Yor, NY, USA, 2017; pp. 1305–1314. [Google Scholar]
- Yu, K.; Lin, T.R.; Ma, H.; Li, X.; Li, X. A multi-stage semi-supervised learning approach for intelligent fault diagnosis of rolling bearing using data augmentation and metric learning.Mech. Syst. Signal Process.2021,146, 107043. [Google Scholar] [CrossRef]
- Bi, C.; Ren, P.; Yin, T.; Zhang, Y.; Li, B.; Xiang, Z. An Informer Architecture-Based Ionospheric foF2 Model in the Middle Latitude Region.IEEE Geosci. Remote Sens. Lett.2022,19, 1005305. [Google Scholar] [CrossRef]
- Song, J.; Chen, C.; Wang, T.; Deng, C.; Cheng, L.; Qin, J. Fault Diagnosis for Industrial Robots Based on Informer. In Proceedings of the 2023 28th International Conference on Automation and Computing (ICAC), Birmingham, UK, 30 August–1 September 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1–6. [Google Scholar]
- Yi, C.; Wang, H.; Ran, L.; Zhou, L.; Lin, J. Power spectral density-guided variational mode decomposition for the compound fault diagnosis of rolling bearings.Measurement2022,199, 111494. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Q.; Qin, X.; Sun, Y.; Zhang, J. Gearbox compound fault diagnosis based on a combined MSGMD–MOMEDA method.Meas. Sci. Technol.2022,33, 065102. [Google Scholar] [CrossRef]
- Liang, P.; Deng, C.; Yuan, X.; Zhang, L. A deep capsule neural network with data augmentation generative adversarial networks for single and simultaneous fault diagnosis of wind turbine gearbox.ISA Trans.2023,135, 462–475. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, H.; Cai, G. The Multiclass Fault Diagnosis of Wind Turbine Bearing Based on Multisource Signal Fusion and Deep Learning Generative Model.IEEE Trans. Instrum. Meas.2022,71, 3514212. [Google Scholar] [CrossRef]
- Zhao, Z.; Wang, J.; Tao, Q.; Li, A.; Chen, Y. An unknown wafer surface defect detection approach based on Incremental Learning for reliability analysis.Reliab. Eng. Syst. Saf.2024,244, 109966. [Google Scholar] [CrossRef]
- Li, J.; Yue, K.; Huang, R.; Chen, Z.; Gryllias, K.; Li, W. Unsupervised Continual Source-Free Network for Fault Diagnosis of Machines Under Multiple Diagnostic Domains.IEEE Sens. J.2023,23, 8292–8303. [Google Scholar] [CrossRef]
- Eren, L.; Ince, T.; Kiranyaz, S. A generic intelligent bearing fault diagnosis system using compact adaptive 1D CNN classifier.J. Signal Process. Syst.2019,91, 179–189. [Google Scholar] [CrossRef]
- Zhang, Q.; Wei, X.; Wang, Y.; Hou, C. Convolutional Neural Network with Attention Mechanism and Visual Vibration Signal Analysis for Bearing Fault Diagnosis.Sensors2024,24, 1831. [Google Scholar] [CrossRef]
- Huang, W.; Li, Y.; Tang, J.; Qian, L. Fault Diagnosis Methods for an Artillery Loading System Driving Motor in Complex Noisy Environments.Sensors2024,24, 847. [Google Scholar] [CrossRef] [PubMed]
- Gong, C.; Peng, R. A Novel Hierarchical Vision Transformer and Wavelet Time–Frequency Based on Multi-Source Information Fusion for Intelligent Fault Diagnosis.Sensors2024,24, 1799. [Google Scholar] [CrossRef] [PubMed]
- Shen, Z.; Kong, X.; Cheng, L.; Wang, R.; Zhu, Y. Fault Diagnosis of the Rolling Bearing by a Multi-Task Deep Learning Method Based on a Classifier Generative Adversarial Network.Sensors2024,24, 1290. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Shao, H.; Lin, J.; Liu, B. Meta-learning with elastic prototypical network for fault transfer diagnosis of bearings under unstable speeds.Reliab. Eng. Syst. Saf.2024,245, 110001. [Google Scholar] [CrossRef]
- Shao, H.; Zhou, X.; Lin, J.; Liu, B. Few-Shot Cross-Domain Fault Diagnosis of Bearing Driven By Task-Supervised ANIL.IEEE Internet Things J.2024, 1. [Google Scholar] [CrossRef]
Fault Category | Labeled Samples | Unlabeled Samples |
---|---|---|
Class 0: Normal | 2000 | 19,000 |
Class 1: Reducer 4 Fault | 2000 | 10,000 |
Class 2: Motor 2 Fault | 1800 | 19,000 |
Class 3: Reducer 3 Fault | 1800 | 15,000 |
Class 4: Reducer 3 and Reducer 4 Faults | 2000 | 12,000 |
Class 5: Reducer 1 and Reducer 3 Faults | 1900 | 15,000 |
Class 6: Reducer 1 and Motor 2 Faults | 2000 | 19,000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, C.; Song, J.; Chen, C.; Wang, T.; Cheng, L. Semi-Supervised Informer for the Compound Fault Diagnosis of Industrial Robots.Sensors2024,24, 3732. https://doi.org/10.3390/s24123732
Deng C, Song J, Chen C, Wang T, Cheng L. Semi-Supervised Informer for the Compound Fault Diagnosis of Industrial Robots.Sensors. 2024; 24(12):3732. https://doi.org/10.3390/s24123732
Chicago/Turabian StyleDeng, Chuanhua, Junjie Song, Chong Chen, Tao Wang, and Lianglun Cheng. 2024. "Semi-Supervised Informer for the Compound Fault Diagnosis of Industrial Robots"Sensors 24, no. 12: 3732. https://doi.org/10.3390/s24123732
APA StyleDeng, C., Song, J., Chen, C., Wang, T., & Cheng, L. (2024). Semi-Supervised Informer for the Compound Fault Diagnosis of Industrial Robots.Sensors,24(12), 3732. https://doi.org/10.3390/s24123732