Origami-Inspired Structure with Pneumatic-Induced Variable Stiffness for Multi-DOF Force-Sensing



Abstract
:1. Introduction
- (1)
- A low-cost, easy-to-use, origami-inspired force-sensing device with a sandwich structure is proposed; the utilization of common Eco-Flex 50, polydimethylsiloxane (PDMS), and cardboard provide the structure with multi-DOF motions to sense various types of forces.
- (2)
- A microfiber sensor with a double-layer structure was designed to improve sensitivity by eliminating strain at the edges. It was seamlessly integrated into the origami-inspired system through a multilayer casting technique.
- (3)
- A pneumatically variable sensing system sensitivity is introduced to solve the traditional problem of fixed sensor sensitivity and further expand the adaptability of sensors to different application scenarios.
2. Materials and Methods
2.1. Design of Origami Structure
2.2. Design of Ultra-Flexible Microfiber Sensor
2.3. Fabrication Process
2.3.1. Microfiber Sensor Fabrication
2.3.2. Origami Fabrication
2.3.3. Integration Fabrication
3. Results
3.1. Origami Structure Analysis and Experiment Test
3.1.1. Kinematic Analysis of Origami Model
3.1.2. Mode Analysis of Origami Structure
3.1.3. Adaptation Test on Origami Structure
3.2. Microfiber Sensor Analysis and Experiment Test
3.2.1. Stress Distribution Analysis of Microfiber Sensor
3.2.2. Mechanical Test Setup
3.2.3. Stability Test
3.2.4. Calibration Test
3.3. Sensing System Experiment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Villalba-Diez, J.; Ordieres-Meré, J. Human–Machine Integration in Processes within Industry 4.0 Management.Sensors2021,21, 5928. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, K. Designing for human-machine collaboration: Smart hearing aids as wearable technologies.Commun. Des. Q. Rev.2018,5, 40–51. [Google Scholar] [CrossRef]
- Chu, R.; Chen, Y.; Kong, T.; Qi, L.; Li, L. ICM-3D: Instantiated Category Modeling for 3D Instance Segmentation.IEEE Robot. Autom. Lett.2021,7, 57–64. [Google Scholar] [CrossRef]
- Li, Q.; Kroemer, O.; Su, Z.; Veiga, F.F.; Kaboli, M.; Ritter, H.J. A review of tactile information: Perception and action through touch.IEEE Trans. Robot.2020,36, 1619–1634. [Google Scholar] [CrossRef]
- Yue, W.; Ju, F.; Zhang, Y.; Yun, Y.; Li, T.; Tse, Z.T.H.; Ren, H. Dynamic Piezoelectric Tactile Sensor for Tissue Hardness Measurement Using Symmetrical Flexure Hinges and Anisotropic Vibration Modes.IEEE Sens. J.2021,21, 17712–17722. [Google Scholar] [CrossRef]
- Zhang, Y.; Wei, X.; Yue, W.; Zhu, C.; Ju, F. A dual-mode tactile hardness sensor for intraoperative tumor detection and tactile imaging in robot-assisted minimally invasive surgery.Smart Mater. Struct.2021,30, 085041. [Google Scholar] [CrossRef]
- Guo, J.; Jin, X.; Guo, S.; Fu, Q. A vascular interventional surgical robotic system based on force-visual feedback.IEEE Sens. J.2019,19, 11081–11089. [Google Scholar] [CrossRef]
- Liu, T.; Inoue, Y.; Shibata, K. A wearable ground reaction force sensor system and its application to the measurement of extrinsic gait variability.Sensors2010,10, 10240–10255. [Google Scholar] [CrossRef] [Green Version]
- Gravina, R.; Alinia, P.; Ghasemzadeh, H.; Fortino, G. Multi-sensor fusion in body sensor networks: State-of-the-art and research challenges.Inf. Fusion2017,35, 68–80. [Google Scholar] [CrossRef]
- Teklemariam, H.G.; Das, A.K. A case study of phantom omni force feedback device for virtual product design.Int. J. Interact. Des. Manuf.2017,11, 881–892. [Google Scholar] [CrossRef]
- Pacchierotti, C.; Sinclair, S.; Solazzi, M.; Frisoli, A.; Hayward, V.; Prattichizzo, D. Wearable haptic systems for the fingertip and the hand: Taxonomy, review, and perspectives.IEEE Trans. Haptics2017,10, 580–600. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Li, R.; Zhang, R.; Li, G.; Zhang, D. A wearable SSVEP-based BCI system for quadcopter control using head-mounted device.IEEE Access2018,6, 26789–26798. [Google Scholar] [CrossRef]
- GChen, H.Y.; Santos, J.; Graves, M.; Kim, K.; Tan, H.Z. Tactor localization at the wrist. In Proceedings of the International conference on Human Haptic Sensing and Touch Enabled Computer Applications, Madrid, Spain, 11–13 June 2008; Volume 35, pp. 209–218. [Google Scholar]
- Li, T.; Pan, A.; Ren, H. Reaction force mapping by 3-axis tactile sensing with arbitrary angles for tissue hard-inclusion localization.IEEE Trans. Biomed. Eng.2020,68, 26–35. [Google Scholar] [CrossRef] [PubMed]
- Parmar, S.; Khodasevych, I.; Troynikov, O. Evaluation of flexible force sensors for pressure monitoring in treatment of chronic venous disorders.Sensors2017,17, 1923. [Google Scholar] [CrossRef] [PubMed]
- Mahadevan, L.; Rica, S. Self-organized origami.Science2005,307, 1740. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teo, Y.X.; Cai, C.J.; Yeow, B.S.; Tse, Z.T.H.; Ren, H. Auto-generating of 2D tessellated crease patterns of 3D biomimetic spring origami structure.Biomim. Intell. Robot.2022,2, 100036. [Google Scholar] [CrossRef]
- Belke, C.H.; Paik, J. Mori: A modular origami robot.IEEE/ASME Trans. Mechatronics2017,22, 2153–2164. [Google Scholar] [CrossRef]
- Li, J.; Godaba, H.; Zhang, Z.Q.; Foo, C.C.; Zhu, J. A soft active origami robot.Extrem. Mech. Lett.2018,24, 30–37. [Google Scholar] [CrossRef]
- Williams, S.R.; Suchoski, J.M.; Chua, Z.; Okamura, A.M. A 4-Degree-of-Freedom Parallel Origami Haptic Device for Normal, Shear, and Torsion Feedback.IEEE Robot. Autom. Lett.2022,7, 3310–3317. [Google Scholar] [CrossRef]
- Colozza, N.; Caratelli, V.; Moscone, D.; Arduini, F. Origami Paper-Based Electrochemical (Bio) Sensors: State of the Art and Perspective.Biosensors2021,11, 328. [Google Scholar] [CrossRef]
- Seo, S.; Park, W.; Lee, D.; Bae, J. Origami-Structured Actuating Modules for Upper Limb Support.IEEE Robot. Autom. Lett.2021,6, 5239–5246. [Google Scholar] [CrossRef]
- Kim, S.R.; Lee, D.Y.; Ahn, S.J.; Koh, J.S.; Cho, K.J. Morphing origami block for lightweight reconfigurable system.IEEE Trans. Robot.2020,37, 494–505. [Google Scholar] [CrossRef]
- Miura, K.; Lang, R.J. The science of Miura-ori: A review.Origami2009,4, 87–99. [Google Scholar]
- Eidini, M. Zigzag-base folded sheet cellular mechanical metamaterials.Extrem. Mech. Lett.2016,6, 96–102. [Google Scholar] [CrossRef] [Green Version]
- Sareh, P.; Chermprayong, P.; Emmanuelli, M.; Nadeem, H.; Kovac, M. Rotorigami: A rotary origami protective system for robotic rotorcraft.Sci. Robot.2018,3, eaah5228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, S.; Vogt, D.M.; Rus, D.; Wood, R.J. Fluid-driven origami-inspired artificial muscles.Proc. Natl. Acad. Sci. USA2017,114, 13132–13137. [Google Scholar] [CrossRef] [Green Version]
- Robertson, M.A.; Kara, O.C.; Paik, J. Soft pneumatic actuator-driven origami-inspired modular robotic “pneumagami”.Int. J. Robot. Res.2021,40, 72–85. [Google Scholar] [CrossRef]
- Yeow, B.S.; Cai, C.J.; Kalairaj, M.S.; Hoo, F.W.; Lee, Z.X.; Tan, J.C.S.; Ho, J.R.; Ma, V.M.; Huang, H.; Ren, H. Origami-Inspired Snap-through Bistability in Parallel and Curved Mechanisms Through the Inflection of Degree Four Vertexes. In Proceedings of the IEEE International Conference on Robotics and Automation, Xi’an, China, 31 May–4 June 2021; pp. 10863–10869. [Google Scholar]
- Xi, W.; Yeo, J.C.; Yu, L.; Zhang, S.; Lim, C.T. Ultrathin and wearable microtubular epidermal sensor for real-time physiological pulse monitoring.Adv. Mater. Technol.2017,2, 1700016. [Google Scholar] [CrossRef]
- Prattichizzo, D.; Chinello, F.; Pacchierotti, C.; Malvezzi, M. Towards wearability in fingertip haptics: A 3-dof wearable device for cutaneous force feedback.IEEE Trans. Haptics2013,6, 506–516. [Google Scholar] [CrossRef]
- Salerno, M.; Zhang, K.; Menciassi, A.; Dai, J.S. A novel 4-DOF origami grasper with an SMA-actuation system for minimally invasive surgery.IEEE Trans. Robot.2016,32, 484–498. [Google Scholar] [CrossRef]
- Park, Y.L.; Majidi, C.; Kramer, R.; Bérard, P.; Wood, R.J. Hyperelastic pressure sensing with a liquid-embedded elastomer.J. Micromechanics Microengineering2010,20, 125029. [Google Scholar] [CrossRef] [Green Version]
- Yu, L.; Feng, Y.; S/OM Tamil Selven, D.; Yao, L.; Soon, R.H.; Yeo, J.C.; Lim, C.T. Dual-core capacitive microfiber sensor for smart textile applications.ACS Appl. Mater. Interfaces2019,11, 33347–33355. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yue, W.; Qi, J.; Song, X.; Fan, S.; Fortino, G.; Chen, C.-H.; Xu, C.; Ren, H. Origami-Inspired Structure with Pneumatic-Induced Variable Stiffness for Multi-DOF Force-Sensing.Sensors2022,22, 5370. https://doi.org/10.3390/s22145370
Yue W, Qi J, Song X, Fan S, Fortino G, Chen C-H, Xu C, Ren H. Origami-Inspired Structure with Pneumatic-Induced Variable Stiffness for Multi-DOF Force-Sensing.Sensors. 2022; 22(14):5370. https://doi.org/10.3390/s22145370
Chicago/Turabian StyleYue, Wenchao, Jiaming Qi, Xiao Song, Shicheng Fan, Giancarlo Fortino, Chia-Hung Chen, Chenjie Xu, and Hongliang Ren. 2022. "Origami-Inspired Structure with Pneumatic-Induced Variable Stiffness for Multi-DOF Force-Sensing"Sensors 22, no. 14: 5370. https://doi.org/10.3390/s22145370
APA StyleYue, W., Qi, J., Song, X., Fan, S., Fortino, G., Chen, C.-H., Xu, C., & Ren, H. (2022). Origami-Inspired Structure with Pneumatic-Induced Variable Stiffness for Multi-DOF Force-Sensing.Sensors,22(14), 5370. https://doi.org/10.3390/s22145370