Energy-Effective Data Gathering for UAV-Aided Wireless Sensor Networks
Abstract
:1. Introduction
2. System Model
- Waiting: the SN node chooses to sleep and do not transmit the sensory data;
- Sink transmission: the SN node uploads the sensing data to the closest sink nodes;
- UAV gathering: the SN node delivers the data to the UAV when possible.
3. Problem Formulation
4. Proposed Solution
4.1. Problem Approximation
4.2. Optimal Transmission Policy Design with Fixed Trajectory
Algorithm 1 Dynamic programming for problem P3. |
4.3. UAV Trajectory Optimization with Fixed SNs Transmission Policy
Algorithm 2 Recursive random search algorithm for P4. |
|
5. Numerical Results
- Optimal transmission scheme: in this scheme, only the SNs transmission policy is optimized based on the preplanned UAV trajectory. Specifically, the SNs obtain the deadline of transmission and the trajectory and make their decision on the transmission mode at each time slot. The optimal transmission policy design follows the dynamic programming in Algorithm 1 in Section IV-B. Similar approaches can be taken from [26,27].
- Optimal trajectory scheme: in this scheme, only the UAV trajectory is optimized. The UAV is not aware of the SNs transmission policy, and only optimize the trajectory based on SNs positions. The SNs choose their transmission mode in a heuristic method and try to deliver the data as soon as possible without the awareness of the transmission deadline, i.e., then-th SN uploads data to the UAV when the UAV transmission is possible, and chooses to transmit to the sink node when. The similar schemes are used in [32,33].
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ebrahimi, D.; Sharafeddine, S.; Ho, P.H.; Assi, C. UAV-Aided Projection-Based Compressive Data Gathering in Wireless Sensor Networks.IEEE Int. Things J.2018,6, 1893–1905. [Google Scholar] [CrossRef]
- Liu, B.; Zhu, Q.; Tan, W.; Zhu, H. Congestion-optimal WiFi offloading with user mobility management in smart communications.Wirel. Commun. Mob. Comput.2018,2018, 9297536. [Google Scholar] [CrossRef]
- Liu, B.; Zhu, H. Rotman lens-based two-tier hybrid beamforming for wideband mmWave MIMO-OFDM system with beam squint.EURASIP J. Wirel. Commun. Netw.2018,2018, 267. [Google Scholar] [CrossRef] [Green Version]
- Wu, D.; Jing, H.; Wang, H.; Wang, C.; Wang, R. A hierarchical packet forwarding mechanism for energy harvesting wireless sensor networks.IEEE Commun. Mag.2015,53, 92–98. [Google Scholar] [CrossRef]
- Zhan, C.; Zeng, Y.; Zhang, R. Energy-efficient data collection in UAV enabled wireless sensor network.IEEE Wirel. Commun. Lett.2018,7, 328–331. [Google Scholar] [CrossRef]
- Gharaei, N.; Bakar, K.A.; Hashim, S.Z.M.; Pourasl, A.H.; Butt, S.A. Collaborative mobile sink sojourn time optimization scheme for cluster-based wireless sensor networks.IEEE Sens. J.2018,18, 6669–6676. [Google Scholar] [CrossRef]
- Zhang, J.; Yong, Z.; Rui, Z. UAV-Enabled Radio Access Network: Multi-Mode Communication and Trajectory Design.IEEE Trans. Signal Process2018,66, 5269–5284. [Google Scholar] [CrossRef] [Green Version]
- Alzenad, M.; El-Keyi, A.; Lagum, F.; Yanikomeroglu, H. 3-D placement of an unmanned aerial vehicle base station (UAV-BS) for energy-efficient maximal coverage.IEEE Wirel. Commun. Lett.2017,6, 434–437. [Google Scholar] [CrossRef]
- Lyu, J.; Zeng, Y.; Zhang, R.; Lim, T.J. Placement optimization of UAV-mounted mobile base stations.IEEE Commun. Lett.2017,21, 604–607. [Google Scholar] [CrossRef]
- Zeng, Y.; Zhang, R.; Lim, T.J. Throughput maximization for UAV-enabled mobile relaying systems.IEEE Trans. Commun.2016,64, 4983–4996. [Google Scholar] [CrossRef]
- Lan, K.C.; Wei, M.Z. A compressibility-based clustering algorithm for hierarchical compressive data gathering.IEEE Sens. J.2017,17, 2550–2562. [Google Scholar] [CrossRef]
- Sharma, V.; You, I.; Pau, G.; Collotta, M.; Lim, J.; Kim, J. Lorawan-based energy-efficient surveillance by drones for intelligent transportation systems.Energies2018,11, 573. [Google Scholar] [CrossRef]
- Ahmed, N.; Kanhere, S.S.; Jha, S. On the importance of link characterization for aerial wireless sensor networks.IEEE Commun. Mag.2016,54, 52–57. [Google Scholar] [CrossRef]
- Jiang, F.; Swindlehurst, A.L. Optimization of UAV heading for the ground-to-air uplink.IEEE J. Sel. Areas Commun.2012,30, 993–1005. [Google Scholar] [CrossRef]
- Gong, J.; Chang, T.H.; Shen, C.; Chen, X. Flight Time Minimization of UAV for Data Collection over Wireless Sensor Networks.IEEE J. Sel. Areas Commun.2018,36, 1942–1954. [Google Scholar] [CrossRef]
- Cui, J.; Liu, Y.; Nallanathan, A. Multi-Agent Reinforcement Learning Based Resource Allocation for UAV Networks.arXiv2018, arXiv:1810.10408. [Google Scholar]
- Xu, X.; Zeng, Y.; Guan, Y.L.; Zhang, R. Overcoming endurance issue: UAV-enabled communications with proactive caching.IEEE J. Sel. Areas Commun.2018,36, 1231–1244. [Google Scholar] [CrossRef]
- Popescu, D.; Dragana, C.; Stoican, F.; Ichim, L.; Stamatescu, G. A collaborative UAV-WSN network for monitoring large areas.Sensors2018,18, 4202. [Google Scholar] [CrossRef]
- Arabi, S.; Sabir, E.; Elbiaze, H.; Sadik, M. Data Gathering and Energy Transfer Dilemma in UAV-Assisted Flying Access Network for IoT.Sensors2018,18, 1519. [Google Scholar] [CrossRef]
- Fu, S.; Zhao, L.; Su, Z.; Jian, X. UAV based relay for wireless sensor networks in 5G systems.Sensors2018,18, 2413. [Google Scholar] [CrossRef]
- Puterman, M.L.Markov Decision Processes: Discrete Stochastic Dynamic Programming; John Wiley & Sons: New York, NY, USA, 2014. [Google Scholar]
- Ye, T.; Kaur, H.T.; Kalyanaraman, S.; Yuksel, M. Large-scale network parameter configuration using an on-line simulation framework.IEEE/ACM Trans. Netw.2008,16, 777–790. [Google Scholar]
- Alsharoa, A.; Ghazzai, H.; Yuksel, M.; Kadri, A.; Kama, A.E. Trajectory Optimization for Multiple UAVs Acting as Wireless Relays. In Proceedings of the 2018 IEEE International Conference on Communications Workshops (ICC Workshops), Kansas City, MO, USA, 20–24 May 2018. [Google Scholar]
- Hua, M.; Wang, Y.; Zhang, Z.; Li, C.; Huang, Y.; Yang, L. Power-Efficient Communication in UAV-Aided Wireless Sensor Networks.IEEE Commun. Lett.2018,22, 1264–1267. [Google Scholar] [CrossRef]
- Zhang, C.; Gu, B.; Liu, Z.; Yamori, K.; Tanaka, Y. Cost-and energy-aware multi-flow mobile data offloading using markov decision process.IEICE Trans. Commun.2017. [Google Scholar] [CrossRef]
- Cheung, M.H.; Huang, J. DAWN: Delay-aware Wi-Fi offloading and network selection.IEEE J. Sel. Areas Commun.2015,33, 1214–1223. [Google Scholar] [CrossRef]
- Liu, B.; Zhu, Q.; Zhu, H. Delay-Aware LTE WLAN Aggregation in Heterogeneous Wireless Network.IEEE Access2018,6, 14544–14559. [Google Scholar] [CrossRef]
- Bertsekas, D.P.Dynamic Programming and Optimal Control, 3rd ed.; Athena Scientific: Belmont, MA, USA, 2005. [Google Scholar]
- Cheung, M.H.; Hou, F.; Huang, J. Delay-Sensitive Mobile Crowdsensing: Algorithm Design and Economics.IEEE Trans. Mob. Comput.2018,17, 2761–2774. [Google Scholar] [CrossRef]
- Ye, T.; Kalyanaraman, S. A recursive random search algorithm for large-scale network parameter configuration. In Proceedings of the 2003 ACM SIGMETRICS international conference on Measurement and modeling of computer systems, San Diego, CA, USA, 11–14 June 2003; pp. 196–205. [Google Scholar]
- Murabito, A.A Comparison of Efficiency, Throughput, and Energy Requirements of Wireless Access Points; Univ. New Hamps. InterOper. Lab.: Durham, NH, USA, 2009. [Google Scholar]
- Zhao, M.; Ma, M.; Yang, Y. Efficient data gathering with mobile collectors and space-division multiple access technique in wireless sensor networks.IEEE Trans. Comput.2011,60, 400–417. [Google Scholar] [CrossRef]
- Salarian, H.; Chin, K.W.; Naghdy, F. An energy-efficient mobile-sink path selection strategy for wireless sensor networks.IEEE Trans. Veh. Technol.2014,63, 2407–2419. [Google Scholar] [CrossRef]
- Chang, J.H.; Tassiulas, L. Maximum lifetime routing in wireless sensor networks.IEEE/ACM Trans. Netw.2004,12, 609–619. [Google Scholar] [CrossRef]
- Du, R.; Gkatzikis, L.; Fischione, C.; Xiao, M. On maximizing sensor network lifetime by energy balancing.IEEE/ACM Trans. Netw.2018,5, 1206–1218. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, B.; Zhu, H. Energy-Effective Data Gathering for UAV-Aided Wireless Sensor Networks.Sensors2019,19, 2506. https://doi.org/10.3390/s19112506
Liu B, Zhu H. Energy-Effective Data Gathering for UAV-Aided Wireless Sensor Networks.Sensors. 2019; 19(11):2506. https://doi.org/10.3390/s19112506
Chicago/Turabian StyleLiu, Bin, and Hongbo Zhu. 2019. "Energy-Effective Data Gathering for UAV-Aided Wireless Sensor Networks"Sensors 19, no. 11: 2506. https://doi.org/10.3390/s19112506
APA StyleLiu, B., & Zhu, H. (2019). Energy-Effective Data Gathering for UAV-Aided Wireless Sensor Networks.Sensors,19(11), 2506. https://doi.org/10.3390/s19112506