Grey Model Optimized by Particle Swarm Optimization for Data Analysis and Application of Multi-Sensors
Abstract
:1. Introduction
2. Multivariable Grey Model
3. PSO-Basedq Parameter Optimization
- Step 1:
- Population initialization, including populationn and speedv.
- Step 2:
- Constructing the objective functionfit (q), as follows:where is the fitness of thei particle after thek moves. The fitness values of each particle in the population are solved according to the fitness function.
- Step 3:
- Saving the individual historical optimal value of the particle.
- Step 4:
- Saving the global historical optimal value of the particle.
- Step 5:
- Step 5: Judging whether the algorithm reaches the prescribed number of iterations. If the condition is satisfied, then the global optimum is outputted; if it is not satisfied, then proceed to Step 6.
- Step 6:
- Step 6: Iteration of updates, according to Formulas (10) and (11).
- Step 7:
- Step 7: Proceed to Step 2.
4. Application of PSO to MGM in Temperature Prediction of the Pumping Station Unit
5. Comparison among Algorithms
- (1)
- The single-variable grey model only considers the influence of its own variables, but does not consider the coupling relationship between multiple variables. This is the defect relative to the multi-variable grey model method, which limits its prediction accuracy.
- (2)
- Considering the practical application of the project, there is not enough temperature data in this paper, especially the temperature data in various modes to train the BP neural network model method. It is inevitable that the BP neural network model trained only with finite temperature data will have problems such as insufficient training and poor generalization due to over-fitting and combination. Therefore, the prediction accuracy of BP neural network model is low.
- (3)
- The prediction accuracy of the general multi-variable grey model is high, but it is still lower than the optimized multi-variable grey model. This is because the defaultq parameter of the general multi-variable grey model is 0.5, which is not the optimal parameter.
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sinay, J.; Pacaiova, H.; Oravec, M. Present state of machinery safety assessment. In Proceedings of the 16th International DAAAM Symposium: Intelligent Manufacturing and Automation: Focus on Young Researchers and Scientists, Opatija, Croatia, 19–21 October 2005; pp. 347–348. [Google Scholar]
- Carle, P.F.; Alford, T.; Bibelhausen, D. Machinery Condition Assessment Module. U.S. Patent No. 7,593,784, 22 September 2009. [Google Scholar]
- Liu, X.Y.; Qiu, D. Analyzing and Treating the Failure of Unit 1 Governor Screw Pump of Wuqiangxi Hydropower Station.North China Electr. Power2010,4, 016. [Google Scholar]
- Qiu, B.; Wang, T.; Wei, Q.L.; Tang, Z.J.; Gong, W.M. Common fault analysis of large pumping stations.J. Drain. Irrig. Eng.1999,2, 20–24. [Google Scholar]
- Bi, Z.; Li, C.; Li, X.; Gao, H. Research on Fault Diagnosis for Pumping Station Based on T-S Fuzzy Fault Tree and Bayesian Network.J. Electr. Comput. Eng.2017,2017, 1–11. [Google Scholar] [CrossRef]
- Song, M.; Wang, X.; Liao, L.; Deng, S. Termination Control Temperature Study for an Air Source Heat Pump Unit during Its Reverse Cycle Defrosting.Energy Procedia2017,105, 335–342. [Google Scholar]
- Wang, K.Y. Prediction of System Performance of Fankou Pump Unit Based on CFD Simulation.China Rural Water Hydropower2009,2, 027. [Google Scholar]
- Belmonte, L.M.; Morales, R.; Fernández-Caballero, A.; Somolinos, J.A. Robust Decentralized Nonlinear Control for a Twin Rotor MIMO System.Sensors2016,16, 1160. [Google Scholar] [CrossRef] [PubMed]
- Mao, Y.; Liu, Y.; Ding, F. Filtering based multi-innovation stochastic gradient identification algorithm for multivariable nonlinear equation-error autoregressive systems. In Proceedings of the 12th World Congress on Intelligent Control and Automation (WCICA 2016), Guilin, China, 12–15 June 2016; pp. 3027–3032. [Google Scholar]
- Ortiz, J.P.; Minchala, L.I.; Reinoso, M.J. Nonlinear Robust H-Infinity PID Controller for the Multivariable System Quadrotor.IEEE Lat. Am. Trans.2016,14, 1176–1183. [Google Scholar] [CrossRef]
- Piotrowski, A.P.; Napiorkowski, M.J.; Napiorkowski, J.J.; Osuch, M. Comparing various artificial neural network types for water temperature prediction in rivers.J. Hydrol.2015,529, 302–315. [Google Scholar] [CrossRef]
- Drevetskyi, V.; Klepach, M.; Kutia, V. Water consumption prediction for city pumping station using neural networks. In Proceedings of the 1st International Conference on Intelligent Systems in Production Engineering and Maintenance (ISPEM 2017), Wrocław, Poland, 28–29 September 2017; pp. 459–467. [Google Scholar]
- Tang, Y.; Chang, L. Prediction of bearing bush temperature of hydroelectric generating units based on improved BP algorithm.J. Huazhong Univ. Sci. Technol.2002,30, 78–80. [Google Scholar]
- Liu, S. The birth and development of grey system theory.J. Nanjing Univ. Aeronaut. Astronaut.2004,2, 267–272. [Google Scholar]
- Hochba, D.S. Approximation Algorithms for NP-Hard Problems.ACM SIGACT News2004,28, 40–52. [Google Scholar] [CrossRef]
- Zhang, S.; Jiang, H.; Yin, Y.; Zhao, B. The Prediction of the Gas Utilization Ratio Based on TS Fuzzy Neural Network and Particle Swarm Optimization.Sensors2018,18, 625. [Google Scholar] [CrossRef] [PubMed]
- Hamzacebi, C.; Es, H.A. Forecasting the annual electricity consumption of Turkey using an optimized grey model.Energy2014,70, 165–171. [Google Scholar] [CrossRef]
No (k) | Real Sequence | MGM (1, 3,q) Prediction Sequence | Relative Error (%) | ||||||
---|---|---|---|---|---|---|---|---|---|
1 | 24.24 | 23.13 | 21.43 | 24.24 | 23.13 | 21.43 | 0 | 0 | 0 |
2 | 27.63 | 25.32 | 21.93 | 27.65 | 25.34 | 21.94 | 6.19 × 10−2 | 6.96 × 10−2 | 3.04 × 10−2 |
3 | 29.62 | 27.34 | 22.73 | 29.71 | 27.33 | 22.70 | 0.31 | 2.14 × 10−4 | 0.13 |
4 | 31.31 | 29.03 | 23.34 | 31.22 | 29.01 | 23.38 | 0.29 | 7.61 × 10−4 | 0.16 |
5 | 32.32 | 30.52 | 23.95 | 32.35 | 30.47 | 23.99 | 0.10 | 0.15 | 0.15 |
6 | 33.30 | 31.71 | 24.64 | 33.23 | 31.81 | 24.54 | 0.22 | 0.31 | 0.41 |
7 | 33.80 | 33.11 | 25.03 | 33.91 | 33.05 | 25.04 | 0.33 | 0.19 | 5.4 × 10−2 |
8 | 34.52 | 34.30 | 25.43 | 34.44 | 34.22 | 25.50 | 0.22 | 0.22 | 0.27 |
9 | 34.81 | 35.31 | 25.93 | 34.85 | 35.35 | 25.91 | 0.12 | 0.12 | 9.13 × 10−2 |
10 | 35.50 | 36.11 | 26.33 | 35.15 | 36.44 | 26.26 | 0.99 | 0.91 | 0.26 |
Mean relative error | 0.26 | 0.19 | 0.15 |
No (k) | Real Sequence | MGM (1, 3,q) Prediction Sequence | Relative Error (%) | ||||||
---|---|---|---|---|---|---|---|---|---|
1 | 24.24 | 23.13 | 21.43 | 24.24 | 23.13 | 21.43 | 0 | 0 | 0 |
2 | 27.63 | 25.32 | 21.93 | 27.67 | 25.36 | 21.94 | 0.13 | 0.14 | 6.39 × 10−2 |
3 | 29.62 | 27.34 | 22.73 | 29.72 | 27.35 | 22.71 | 0.34 | 2.58 × 10−2 | 0.11 |
4 | 31.31 | 29.03 | 23.34 | 31.22 | 29.02 | 23.38 | 0.28 | 4.16 × 10−2 | 0.18 |
5 | 32.32 | 30.52 | 23.95 | 32.35 | 30.48 | 23.99 | 0.11 | 0.12 | 0.17 |
6 | 33.30 | 31.71 | 24.64 | 33.23 | 31.82 | 24.54 | 0.22 | 0.33 | 0.40 |
7 | 33.80 | 33.11 | 25.03 | 33.91 | 33.06 | 25.05 | 0.32 | 0.16 | 6.22 × 10−2 |
8 | 34.52 | 34.30 | 25.43 | 34.44 | 34.23 | 25.50 | 0.23 | 0.20 | 0.28 |
9 | 34.81 | 35.31 | 25.93 | 34.85 | 35.36 | 25.91 | 0.11 | 0.14 | 9.12 × 10−4 |
10 | 35.50 | 36.11 | 26.33 | 35.14 | 36.44 | 26.26 | 1.00 | 0.94 | 0.26 |
Mean relative error | 0.27 | 0.21 | 0.15 |
No (k) | Real Sequence | MGM (1, 3,q) Prediction Sequence | Relative Error (%) | ||||||
---|---|---|---|---|---|---|---|---|---|
1 | 24.24 | 23.13 | 21.43 | 24.24 | 23.13 | 21.43 | 0 | 0 | 0 |
2 | 27.63 | 25.32 | 21.93 | 29.05 | 26.41 | 22.27 | 5.15 | 4.30 | 1.55 |
3 | 29.62 | 27.34 | 22.73 | 29.87 | 27.54 | 22.77 | 0.84 | 0.73 | 0.18 |
4 | 31.31 | 29.03 | 23.34 | 30.71 | 28.72 | 23.28 | 1.93 | 1.07 | 0.26 |
5 | 32.32 | 30.52 | 23.95 | 31.57 | 29.95 | 23.8 | 2.33 | 1.87 | 0.63 |
6 | 33.30 | 31.71 | 24.64 | 32.45 | 31.24 | 24.33 | 2.54 | 1.48 | 1.26 |
7 | 33.80 | 33.11 | 25.03 | 33.36 | 32.57 | 24.87 | 1.30 | 1.63 | 0.64 |
8 | 34.52 | 34.30 | 25.43 | 34.30 | 33.97 | 25.43 | 0.65 | 0.96 | 0 |
9 | 34.81 | 35.31 | 25.93 | 35.26 | 35.43 | 25.99 | 1.29 | 0.34 | 0.23 |
10 | 35.50 | 36.11 | 26.33 | 36.25 | 36.94 | 26.57 | 2.10 | 2.30 | 0.91 |
Mean relative error | 1.81 | 1.47 | 0.56 |
No (k) | Real Sequence | MGM (1, 3,q) Prediction Sequence | Relative Error (%) | ||||||
---|---|---|---|---|---|---|---|---|---|
1 | 24.24 | 23.13 | 21.43 | 25.60 | 24.62 | 20.13 | 5.61 | 6.44 | 6.07 |
2 | 27.63 | 25.32 | 21.93 | 27.45 | 25.91 | 21.20 | 0.65 | 2.33 | 3.33 |
3 | 29.62 | 27.34 | 22.73 | 29.65 | 27.64 | 21.97 | 0.10 | 1.10 | 3.34 |
4 | 31.31 | 29.03 | 23.34 | 31.71 | 28.79 | 23.04 | 1.27 | 0.83 | 1.28 |
5 | 32.32 | 30.52 | 23.95 | 32.25 | 29.85 | 23.70 | 0.22 | 2.20 | 1.04 |
6 | 33.30 | 31.71 | 24.64 | 33.75 | 30.54 | 24.05 | 1.35 | 3.69 | 2.39 |
7 | 33.80 | 33.11 | 25.03 | 34.20 | 32.17 | 24.46 | 1.18 | 2.84 | 2.27 |
8 | 34.52 | 34.30 | 25.43 | 34.82 | 33.85 | 25.02 | 0.86 | 1.31 | 1.61 |
9 | 34.81 | 35.31 | 25.93 | 35.21 | 35.24 | 25.65 | 1.14 | 0.20 | 1.08 |
10 | 35.50 | 36.11 | 26.33 | 36.22 | 36.86 | 26.04 | 2.02 | 2.08 | 1.10 |
Mean relative error | 1.44 | 2.30 | 2.35 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.; Gao, H.; Qiu, J.; Yang, Y.; Qu, X.; Wang, Y.; Bi, Z. Grey Model Optimized by Particle Swarm Optimization for Data Analysis and Application of Multi-Sensors.Sensors2018,18, 2503. https://doi.org/10.3390/s18082503
Li C, Gao H, Qiu J, Yang Y, Qu X, Wang Y, Bi Z. Grey Model Optimized by Particle Swarm Optimization for Data Analysis and Application of Multi-Sensors.Sensors. 2018; 18(8):2503. https://doi.org/10.3390/s18082503
Chicago/Turabian StyleLi, Chenming, Hongmin Gao, Junlin Qiu, Yao Yang, Xiaoyu Qu, Yongchang Wang, and Zhuqing Bi. 2018. "Grey Model Optimized by Particle Swarm Optimization for Data Analysis and Application of Multi-Sensors"Sensors 18, no. 8: 2503. https://doi.org/10.3390/s18082503
APA StyleLi, C., Gao, H., Qiu, J., Yang, Y., Qu, X., Wang, Y., & Bi, Z. (2018). Grey Model Optimized by Particle Swarm Optimization for Data Analysis and Application of Multi-Sensors.Sensors,18(8), 2503. https://doi.org/10.3390/s18082503