Design and Optimization of a Novel Three-Dimensional Force Sensor with Parallel Structure
Abstract
:1. Introduction
2. Model Description and Mobility Analysis
3. Kinematics Analysis
4. Performance Analysis
4.1. Sensitivity Diversity Index
4.2. Measuring Capability
4.3. Dynamic Analysis
5. Multi-Objective Optimization
5.1. Fitness Function
5.2. Optimization Results
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Liang, Q.; Zhang, D.; Coppola, G.; Wang, Y.; Wei, S.; Ge, Y. Multi-dimensional MEMS/micro sensor for force and moment sensing: A review.IEEE Sens. J.2014,14, 2643–2657. [Google Scholar] [CrossRef]
- Sehoon, O.; Kyoungchul, K.; Yoichi, H. Design and Analysis of Force-Sensor-Less Power-Assist Control.IEEE Trans. Ind. Electron.2014,61, 985–993. [Google Scholar]
- Thomas, V.P.; Julian, L.; Mark, L. A large area force sensor for smart skin applications. In Proceedings of the IEEE Sensors, Orlando, FL, USA, 12–14 June 2002. [Google Scholar]
- Pinyo, P.; Hongbin, L.; Lakmal, D.S.; Prokar, D.; Kaspar, A. Miniature 3-Axis Distal Force Sensor for Minimally Invasive Surgical Palpation.IEEE/ASME Trans. Mech.2012,17, 646–656. [Google Scholar]
- Jacq, C.; Lüthi, B.; Maeder, T.; Lambercy, O.; Gassert, R.; Ryser, P. Thick-film multi-DOF force/torque sensor for wrist rehabilitation.Sens. Actuators A Phys.2010,162, 361–366. [Google Scholar] [CrossRef] [Green Version]
- Zi, B.; Yin, G.; Zhang, D. Design and Optimization of a Hybrid-Driven Waist Rehabilitation Robot.Sensors2016,16, 2121. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, G.; Zhang, J.; Jia, Z. Dynamic characteristics of piezoelectric six-dimensional heavy force/moment sensor for large-load robotic manipulator.Measurement2012,45, 1114–1125. [Google Scholar] [CrossRef]
- Liu, W.; Li, Y.; Jia, Z.; Zhang, J.; Qian, M. Research on parallel load sharing principle of piezoelectric six-dimensional heavy force/torque sensor.Mech. Syst. Signal Process.2011,25, 331–343. [Google Scholar] [CrossRef]
- Valdastri, P.; Roccella, S.; Beccai, L.; Cattin, E.; Menciassi, A.; Carrozza, M.C.; Dario, P. Characterization of a novel hybrid silicon three-axial force sensor.Sens. Actuators A Phys.2005,123–124, 249–257. [Google Scholar] [CrossRef]
- Quist, B.W.; Hartmann, M.J.Z. A two-dimensional force sensor in the millinewton range for measuring vibrissal contacts.J. Neurosci. Meth.2008,172, 158–167. [Google Scholar] [CrossRef] [PubMed]
- Yang, E. Design and Sensitivity Analysis Simulation of a Novel 3D Force Sensor Based on a Parallel Mechanism.Sensors2016,16, 2147. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Cao, Y.; Zhang, C.; Zhang, D.; Zhang, J. Error Modeling and Experimental Study of a Flexible Joint 6-UPUR Parallel Six-Axis Force Sensor.Sensors2017,17, 2238. [Google Scholar] [CrossRef] [PubMed]
- Song, A.; Wu, J.; Qin, G.; Huang, W. A novel self-decoupled four degree-of-freedom wrist force/torque sensor.Measurement2007,40, 883–891. [Google Scholar] [CrossRef]
- Liang, Q.; Zhang, D.; Chi, Z.; Song, Q.; Ge, Y.; Ge, Y. Six-DOF micro-manipulator based on compliant parallel mechanism with integrated force sensor.Robot. Comput.-Integr. Manuf.2011,27, 124–134. [Google Scholar] [CrossRef]
- Gao, Z.; Zhang, D. Design, analysis and fabrication of a multidimensional acceleration sensor based on fully decoupled compliant parallel mechanism.Sens. Actuators A Phys.2010,163, 418–427. [Google Scholar] [CrossRef]
- Nishiwaki, K.; Murakami, Y.; Kagami, S.; Kuniyoshi, Y.; Inaba, M.; Inoue, H. A six-axis force sensor with parallel support mechanism to measure the ground reaction force of humanoid robot. In Proceedings of the 2002 IEEE International Conference on Robotics and Automation, Washington, DC, USA, 11–15 May 2002. [Google Scholar]
- Hu, P.H.; Li, Y.J.; Zhao, Q.C. Development of Micro-Force Sensor Based on 3-RRR Parallel Mechanism.Appl. Mech. Mater.2010,36, 57–62. [Google Scholar] [CrossRef]
- Yao, J.; Zhang, H.; Zhu, J.; Xu, Y.; Zhao, Y. Isotropy analysis of redundant parallel six-axis force sensor.Mech. Mach. Theory2015,91, 135–150. [Google Scholar] [CrossRef]
- Bethe, K. Optimization of a compact force-sensor/load-cell family.Sens. Actuators A Phys.1994,42, 362–367. [Google Scholar] [CrossRef]
- Hou, Y.; Zeng, D.; Yao, J.; Kang, K.; Lu, L.; Zhao, Y. Optimal design of a hyperstatic Stewart platform-based force/torque sensor with genetic algorithms.Mechatronics2009,19, 199–204. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, Y.; Zou, T.; Jin, M.; Liu, H. Design and optimization of a novel six-axis force/torque sensor for space robot.Measurement2015,65, 135–148. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, Y.; Jin, M.; Liu, H. Design and optimization of a novel six-axis force/torque sensor with good isotropy and high sensitivity. In Proceedings of the 2013 IEEE International Conference on Robotics and Biomimetics, Shenzhen, China, 12–14 December 2013. [Google Scholar]
- Zhao, Y.; Zhao, T.; Wen, R.; Wang, H. Performance Analysis and Optimization of Sizable 6-axis Force Sensor Based on Stewart Platform. In Proceedings of the 2007 International Conference on Mechatronics and Automation, Harbin, China, 5–8 August 2007. [Google Scholar]
- Sun, Y.; Liu, Y.; Liu, H. Temperature Compensation for a Six-Axis Force/Torque Sensor Based on the Particle Swarm Optimization Least Square Support Vector Machine for Space Manipulator.IEEE Sens. J.2016,16, 798–805. [Google Scholar] [CrossRef]
- Kang, M.; Lee, S.; Kim, J. Shape optimization of a mechanically decoupled six-axis force/torque sensor.Sens. Actuators A Phys.2014,209, 41–51. [Google Scholar] [CrossRef]
- Yang, E.C. A novel measurement of intersegmental forces exerted on human lower limbs during forward falling and regaining balance motions.Measurement2015,60, 114–120. [Google Scholar] [CrossRef]
- Chi, Q.; Yan, H.; Zhang, C.; Pang, Z.; Xu, L.D. A Reconfigurable Smart Sensor Interface for Industrial WSN in IoT Environment.IEEE Trans. Ind. Inform.2014,10, 1417–1425. [Google Scholar]
- Kuo, C.; Chen, T. PN-WSNA: An Approach for Reconfigurable Cognitive Sensor Network Implementations.IEEE Sens. J.2011,11, 319–334. [Google Scholar] [CrossRef]
- Liang, Q.; Zhang, D.; Ge, Y.; Song, Q. A Novel Miniature Four-Dimensional Force/Torque Sensor with Overload Protection Mechanism.IEEE Sens. J.2009,9, 1741–1747. [Google Scholar] [CrossRef]
- Liang, Q.; Zhang, D.; Song, Q.; Ge, Y.; Cao, H.; Ge, Y. Design and Fabrication of a Six-Dimensional Wrist Force/Torque Sensor Based on E-type Membranes Compared to Cross Beams.Measurement2010,43, 1702–1719. [Google Scholar] [CrossRef]
- Wu, B.; Luo, J.; Shen, F.; Ren, Y.; Wu, Z. Optimum Design Method of Multi-Axis Force Sensor Integrated in Humanoid Robot Foot System.Measurement2011,44, 1651–1660. [Google Scholar] [CrossRef]
- Huang, G.; Guo, S.; Zhang, D.; Qu, H.; Tang, H. Kinematic Analysis and Multi-Objective Optimization of a New Reconfigurable Parallel Mechanism with High Stiffness.Robotica2018,36, 187–203. [Google Scholar] [CrossRef]
Parameter | Value | Parameter | Value (mm) |
---|---|---|---|
G | 8000 kg/mm2 | r | 92 |
d | 2.5 | b | 208 |
Do | 14 | L | 90 |
N | 20 | m | 280 |
Range alongx-Axis | Range alongy-Axis | Sensitivity alongx-Axis | Sensitivity alongy-Axis | |
---|---|---|---|---|
Liang et al., (2009) [29] | 1.2 | 1.2 | 0.73 | 0.57 |
Liang et al., (2010) [30] | 1.4 | 1.4 | 1.07 | 1.15 |
Song et al., (2007) [13] | 1 | 1 | 1.4 | 1.4 |
Wu et al., (2011) [31] | 0.53 | 0.53 | 0.69 | 0.69 |
Proposed sensor | 4.87 | 5.85 | 6.80 | 4.57 |
Mode | 1 | 2 | 3 | 4 | 5 | 6 |
Frequency (Hz) | 79.06 | 79.17 | 127.9 | 407.9 | 424.5 | 428.2 |
m (mm) | b (mm) | r (mm) | |
---|---|---|---|
Maximum | 280 | 220 | 120 |
Minimum | 200 | 180 | 80 |
r (mm) | b (mm) | m (mm) | Workspace | GSDI |
---|---|---|---|---|
80.000 | 187.448 | 272.140 | 5342 | 1.753 |
80.001 | 187.280 | 271.858 | 5305 | 1.752 |
80.350 | 187.112 | 272.871 | 5428 | 1.756 |
80.339 | 187.093 | 272.790 | 5413 | 1.755 |
80.001 | 187.282 | 271.856 | 5304 | 1.752 |
80.000 | 187.265 | 271.922 | 5317 | 1.752 |
85.916 | 180.461 | 279.073 | 6242 | 1.796 |
80.436 | 186.805 | 273.378 | 5523 | 1.756 |
80.353 | 187.090 | 272.798 | 5415 | 1.755 |
85.955 | 180.000 | 279.688 | 6350 | 1.797 |
80.007 | 187.101 | 271.914 | 5326 | 1.752 |
80.009 | 187.259 | 271.936 | 5319 | 1.752 |
80.000 | 187.453 | 272.144 | 5343 | 1.753 |
80.000 | 187.435 | 272.170 | 5344 | 1.754 |
80.009 | 187.272 | 271.907 | 5314 | 1.752 |
80.000 | 186.675 | 271.801 | 5340 | 1.752 |
80.000 | 186.680 | 271.793 | 5338 | 1.752 |
86.003 | 180.154 | 279.581 | 6327 | 1.797 |
80.000 | 187.280 | 271.860 | 5305 | 1.752 |
80.350 | 187.111 | 272.870 | 5428 | 1.756 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, G.; Zhang, D.; Guo, S.; Qu, H. Design and Optimization of a Novel Three-Dimensional Force Sensor with Parallel Structure.Sensors2018,18, 2416. https://doi.org/10.3390/s18082416
Huang G, Zhang D, Guo S, Qu H. Design and Optimization of a Novel Three-Dimensional Force Sensor with Parallel Structure.Sensors. 2018; 18(8):2416. https://doi.org/10.3390/s18082416
Chicago/Turabian StyleHuang, Guanyu, Dan Zhang, Sheng Guo, and Haibo Qu. 2018. "Design and Optimization of a Novel Three-Dimensional Force Sensor with Parallel Structure"Sensors 18, no. 8: 2416. https://doi.org/10.3390/s18082416
APA StyleHuang, G., Zhang, D., Guo, S., & Qu, H. (2018). Design and Optimization of a Novel Three-Dimensional Force Sensor with Parallel Structure.Sensors,18(8), 2416. https://doi.org/10.3390/s18082416